• Title/Summary/Keyword: Wireless Signals

Search Result 716, Processing Time 0.027 seconds

Indoor Positioning Technology Integrating Pedestrian Dead Reckoning and WiFi Fingerprinting Based on EKF with Adaptive Error Covariance

  • Eui Yeon Cho;Jae Uk Kwon;Myeong Seok Chae;Seong Yun Cho;JaeJun Yoo;SeongHun Seo
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.3
    • /
    • pp.271-280
    • /
    • 2023
  • Pedestrian Dead Reckoning (PDR) methods using initial sensors are being studied to provide the location information of smart device users in indoor environments where satellite signals are not available. PDR can continuously estimate the location of a pedestrian regardless of the walking environment, but has the disadvantage of accumulating errors over time. Unlike this, WiFi signal-based wireless positioning technology does not accumulate errors over time, but can provide positioning information only where infrastructure is installed. It also shows different positioning performance depending on the environment. In this paper, an integrated positioning technology integrating two positioning techniques with different error characteristics is proposed. A technique for correcting the error of PDR was designed by using the location information obtained through WiFi Measurement-based fingerprinting as the measurement of Extended Kalman Filte (EKF). Here, a technique is used to variably calculate the error covariance of the filter measurements using the WiFi Fingerprinting DB and apply it to the filter. The performance of the proposed positioning technology is verified through an experiment. The error characteristics of the PDR and WiFi Fingerprinting techniques are analyzed through the experimental results. In addition, it is confirmed that the PDR error is effectively compensated by adaptively utilizing the WiFi signal to the environment through the EKF to which the adaptive error covariance proposed in this paper is applied.

A Consideration on the Application of Metal Surface Wave Communication Technology in the Ships (금속체 표면파 통신 기술의 선내 적용 방안에 관한 고찰)

  • Jin-Woo Kong;Bu-Young Kim;Woo-Seong Shim
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2023.11a
    • /
    • pp.135-136
    • /
    • 2023
  • This study is an empirical result for building an onboard communication network using metal surface wave communication and is a consideration of its application within the ship. Over the past three years, the applicability and the performance of metal surface wave communication has been confirmed by testing on five small and medium ships. In the tests, IEEE 802.11 protocol of Wi-Fi was used, and the signals were generated in the form of surface waves. Data was sent from AP to AP in the point-to-point form, and the transmission speed was measured at the same time. If necessary, additional repeaters were used to extend the transmission distance. As derived a transmission speed of 5 to 100 Mbps in wireless communication restricted areas of the 5 ships, it is believed that it is possible to reduce the weight of ships and costs by eliminating the communication cables by using surface wave communication as the back-bone network on ships.

  • PDF

A Study on the BER Performance Improvement Method Using Hybrid Transmission Techniques in Visible Light Communication System (가시광통신 시스템에서 하이브리드 전송기법을 이용한 BER 성능향상 기법에 대한 연구)

  • Kyu-Jin Lee
    • Journal of Industrial Convergence
    • /
    • v.22 no.2
    • /
    • pp.55-62
    • /
    • 2024
  • Visible light communication, which transmits information using visible light, has advantages such as ultra-high speed, ultra-delay, and ultra-connectivity, so research is being conducted as a way to complement 6G communication. In this paper, a study was conducted to overcome the performance degradation caused by the RGB mixing ratio in visible light communication. In a visible light communication system using LED lighting, the role of lighting is an important function, and when used for communication, the performance difference according to the RGB mixing ratio inevitably occurs. In particular, if the intensity of light is below a certain standard, the problem of deteriorating the performance of the entire system occurs. In this study, when a certain performance or less occurs in the communication system caused by the difference in the mixing ratio among the three RGB channels, the remaining two signals except the LED with the best performance are transmitted to STBC (Space-Time Block Coding) to ensure the quality of communication. A computer simulation was performed to verify the performance of the proposed system, and it can be seen that the performance of the proposed system is improved compared to the existing system.

Localization using Neural Networks and Push-Pull Estimation based on RSS from AP to Mobile Device (통신기지국과 모바일장치간의 수신신호강도를 기반으로 하는 신경망과 푸쉬-풀 평가를 이용한 위치추정)

  • Cho, Seong-Jin;Lee, Sung-Young
    • The KIPS Transactions:PartD
    • /
    • v.19D no.3
    • /
    • pp.237-246
    • /
    • 2012
  • Although the development of Global Positioning System (GPS) are more and more mature, its accuracy is just acceptable for outdoor positioning, not positioning for the indoor of building and the underpass. For the positioning application area for the indoor of building and the underpass, GPS even cannot achieve that accuracy because of the construction materials while the requirement for accurate positioning in the indoor of building and the underpass, because a space, a person is necessary, may be very small space with several square meters in the indoor of building and the underpass. The Received Signal Strength (RSS) based localization is becoming a good choice especially for the indoor of building and the underpass scenarios where the WiFi signals of IEEE 802.11, Wireless LAN, are available in almost every indoor of building and the underpass. The fundamental requirement of such localization system is to estimate location from Access Point (AP) to mobile device using RSS at a specific location. The Multi-path fading effects in this process make RSS to fluctuate unpredictably, causing uncertainty in localization. To deal with this problem, the combination for the method of Neural Networks and Push-Pull Estimation is applied so that the carried along the devices can learn and make the decision of position using mobile device where it is in the indoor of building and the underpass.

Development and Field Test of a Smart-home Gas Safety Management System (스마트 홈 가스안전관리 시스템 개발 및 현장시험)

  • Park, Gyou-Tae;Kim, Eun-Jung;Kim, In-Chan;Kim, Hie-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.16 no.6
    • /
    • pp.128-135
    • /
    • 2012
  • In this paper, we proposed a system and a scenario to raise efficiency of gas safety management by developing wireless ZigBee communication modules, smart-home gas safety appliances and the system suitable for gas safety. Our designed system consists of a micom gas meter, an automatic extinguisher, sensors, and a wall-pad. A micom-gas-meter monitors gas flow, gas pressure, and earthquake. An automatic fire extinguisher checks combustible gas leaks and temperature of $100^{\circ}C$(cut off) and $130^{\circ}C$(fire). Sensors measure smoke and CO gas. In our novel system, a micom-gas meter cut off inner valve with warnings, an automatic fire extinguisher cut off middle valve and spray extinguishing materials, and sensors generate signals when detecting smoke and CO and then take a next action. Gas safety appliances and sensors automatically takes measures, and transmit those information to a wall-pad. The wall-pad again transmits real time information to server. Users can check and manage gas safety situations by connecting BcN server through web or mobile application. We hereby devised scenarios for gas safety and risk management based on the smart, and demonstrated their efficiency through test applied to filed.

An Adaptive Polling Algorithm for IEEE 802.15.6 MAC Protocols (IEEE 802.15.6 맥 프로토콜을 위한 적응형 폴링 알고리즘 연구)

  • Jeong, Hong-Kyu
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.5
    • /
    • pp.587-594
    • /
    • 2012
  • IEEE 802.15.6 standard technology is proposed for low-power wireless communication in, on and around body, where vital signs such as pulse, blood pressure, ECG, and EEG signals are transmitted as a type of data packet. Especially, these vital signs should be delivered in real time, so that the latency from slave node to hub node can be one of the pivotal performance requirements. However, in the case of IEEE 802.15.6 technology data retransmission caused by transmission failure can be done in the next superframe. In order to overcome this limitation, we propose an adaptive polling algorithm for IEEE 802.15.6 technology. The proposing algorithm makes the hub to look for an appropriate time period in order to make data retransmission within the superframe. Through the performance evaluation, the proposing algorithm achieves a 61% and a 73% latency reduction compared to those of IEEE 802.15.6 technology in the environment of 70% traffic offered load with 10ms and 100ms superframe period. In addition, the proposing algorithm prevents bursty traffic transmission condition caused by mixing retransmission traffic with the traffic reserved for transmission. Through the proposing adaptive polling algorithm, it will be possible to transmit time-sensitive vital signs without severe traffic delay.

A Study on the Radio Transmission of Bio-Signal for Tele-Medicine (원격진료를 위한 생체신호의 무선전송에 대한 연구)

  • 김정년;곽준혁;최조천;조학현
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.3
    • /
    • pp.379-385
    • /
    • 2002
  • Tele-medicine and emergency medical system are necessary for moving from an accidental point or far distance to a hospital and emergency treatment or home treatment before a hospital. Emergency treatment is extremely important in the case of death before arriving a hospital and deformed of disabled by medical treatment delay. A necessary element for this medical system is the emergency communication system. This system is on preparing for an ability of furnishing patient status to a corresponding health service by monitoring the patient at an ambulance of the accident place. This is the transportation of basic biological information of a patient to a medical center by wireless communication system and the corresponding hospital of medical center examine the patient by monitoring, then they can send emergency medical order to the patient for emergency treatment. The TRS is most efficient way of emergency medical communication system, which is currently used with popularity. In this paper studied simultaneously a way of detecting and transporting bio-logical signals, and monitoring of transporting data with communication of voice in the accident place of ambulance.

Multi-Cell Search Scheme for Heterogeneous Networks (이기종 네트워크를 위한 다중 셀 검출 기법)

  • Cho, Yong-Ho;Ko, Hak-lim;Im, Tae-ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.4
    • /
    • pp.395-403
    • /
    • 2016
  • This paper introduces a multi-cell search method for heterogeneous networks (HetNet), in which user equipments need to search multiple cells in its vicinity simultaneously. Due to the difficulty of acquiring channel informations for multiple cells, a non-coherent approach is preferred. In this paper, a non-coherent single-cell search scheme using a weighted vector is proposed, and the successive interference cancellation based multi-cell search algorithm is devised. In order to improve cell search performance, the weighted vector is designed in a way to exploit the general characteristic of wireless channel. Based on the fact that the performance of the proposed single-cell search scheme deviates slowly from the one using the optimal weighted vector, a universal weighted vector is also proposed, which shows the performance close to the optimal ones for various channel environments and signal-to-noise ratio regimes. Simulation results confirm that the proposed multi-cell search algorithm is capable of identifying cells more accurately with the help of the proposed single-cell search scheme, and can detect the remaining cells more effectively by removing the signals of the identified cells from the received signal.

A Study on the Technology Development of User-based Home Automation Service (사용자 위치기반 홈오토메이션 서비스 기술 개발에 관한 연구)

  • Lee, Jung-Gi;Lee, Yeong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.3
    • /
    • pp.327-332
    • /
    • 2017
  • As Internet of Things (IoT) technology advances, there is a growing demand for location-based services (LBSs) to identify users' mobility and identity. The initial LBS system was mainly used to measure position information by measuring the phase of a signal transmitted from a global positioning system (GPS) satellite or by measuring distance to a satellite by tracking the code of a carrier signal. However, the use of GPS satellites is ineffective, because it is difficult to receive satellite signals indoors. Therefore, research on wireless communications systems like ultra-wide band (UWB), radio frequency identification (RFID), and ZigBee are being actively pursued for location recognition technology that can be utilized in an indoor environment. In this paper, we propose an LBS system that includes the 2.45GHz band for chirp spread spectrum (CSS), and the 3.1-10.6GHz band and the 250-750MHz bands for UWB using the IEEE 802.15.4a standard for low power-based location recognition. As a result, we confirmed that the 2.45GHz Industrial, Scientific and Medical (ISM) band RF transceiver and the ranging function can be realized in the hardware and has 0dBm output power.

Development and Performance Test of Gas Safety Management System based on the Ubiquitous Home (u-home 가스안전관리시스템 개발 및 성능시험)

  • Park, Gyou-Tae;Lyu, Geun-Jun;Kim, Young-Gyu;Kim, Yeong-Dae;Jee, Cha-Wan;Kwon, Jong-Won;Kim, Hie-Sik
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.13-20
    • /
    • 2011
  • In this paper, we proposed a system to raise gas safety management by using the wireless communication module and intelligent gas safety appliances. Our designed systems configure a micom-gas meter, an automatic extinguisher, sensors, and a wallpad. A micom-gas-meter monitors gas flow, gas pressure, and earthquake. An automatic fire extinguisher checks gas(combustible) leaks and temperature of $100^{\circ}C$ and $130^{\circ}C$. Sensors measure smoke and CO gas. In our novel system, a micom-gas meter cut off inner valve with warnings, an automatic fire extinguisher cut off middle valve and spray extinguishing materials, and sensors generate signals for smoke and CO when occurring gas risk. Gas safety appliances and sensors takes safety measures, and transmit those signal to a wallpad. The wallpad again transmit signal like events to a control server. Users can connect web pages for gas safety through B-ISDN and control and manage them. We hereby devised scenarios for gas safety and risk management, and demonstrated their effectiveness through experiments.