• 제목/요약/키워드: Wireless Sensor Networks (WSNs). Networks (WSNs)

검색결과 372건 처리시간 0.025초

Multiregional secure localization using compressive sensing in wireless sensor networks

  • Liu, Chang;Yao, Xiangju;Luo, Juan
    • ETRI Journal
    • /
    • 제41권6호
    • /
    • pp.739-749
    • /
    • 2019
  • Security and accuracy are two issues in the localization of wireless sensor networks (WSNs) that are difficult to balance in hostile indoor environments. Massive numbers of malicious positioning requests may cause the functional failure of an entire WSN. To eliminate the misjudgments caused by malicious nodes, we propose a compressive-sensing-based multiregional secure localization (CSMR_SL) algorithm to reduce the impact of malicious users on secure positioning by considering the resource-constrained nature of WSNs. In CSMR_SL, a multiregion offline mechanism is introduced to identify malicious nodes and a preprocessing procedure is adopted to weight and balance the contributions of anchor nodes. Simulation results show that CSMR_SL may significantly improve robustness against attacks and reduce the influence of indoor environments while maintaining sufficient accuracy levels.

무선 센서 네트워크를 위한 에너지 효율적인 계층적 클러스터링 알고리즘 (An Energy Efficient Hierarchical Clustering Algorithm for Wireless Sensor Networks)

  • 차시호;이종언;최석만
    • 디지털산업정보학회논문지
    • /
    • 제4권2호
    • /
    • pp.29-37
    • /
    • 2008
  • Clustering allows hierarchical structures to be built on the nodes and enables more efficient use of scarce resources, such as frequency spectrum, bandwidth, and energy in wireless sensor networks (WSNs). This paper proposes a hierarchical clustering algorithm called EEHC which is more energy efficient than existing algorithms for WSNs, It introduces region node selection as well as cluster head election based on the residual battery capacity of nodes to reduce the costs of managing sensor nodes and of the communication among them. The role of cluster heads or region nodes is rotated among nodes to achieve load balancing and extend the lifetime of every individual sensor node. To do this, EEHC clusters periodically to select cluster heads that are richer in residual energy level, compared to the other nodes, according to clustering policies from administrators. To prove the performance improvement of EEHC, the ns-2 simulator was used. The results show that it can reduce the energy and bandwidth consumption for organizing and managing WSNs comparing it with existing algorithms.

Energy-efficient data transmission technique for wireless sensor networks based on DSC and virtual MIMO

  • Singh, Manish Kumar;Amin, Syed Intekhab
    • ETRI Journal
    • /
    • 제42권3호
    • /
    • pp.341-350
    • /
    • 2020
  • In a wireless sensor network (WSN), the data transmission technique based on the cooperative multiple-input multiple-output (CMIMO) scheme reduces the energy consumption of sensor nodes quite effectively by utilizing the space-time block coding scheme. However, in networks with high node density, the scheme is ineffective due to the high degree of correlated data. Therefore, to enhance the energy efficiency in high node density WSNs, we implemented the distributed source coding (DSC) with the virtual multiple-input multiple-output (MIMO) data transmission technique in the WSNs. The DSC-MIMO first compresses redundant source data using the DSC and then sends it to a virtual MIMO link. The results reveal that, in the DSC-MIMO scheme, energy consumption is lower than that in the CMIMO technique; it is also lower in the DSC single-input single-output (SISO) scheme, compared to that in the SISO technique at various code rates, compression rates, and training overhead factors. The results also indicate that the energy consumption per bit is directly proportional to the velocity and training overhead factor in all the energy saving schemes.

GEOP : 보안 인식 다중경로 라우팅 프로토콜 (GEOP : A Security Aware Multipath Routing Protocol)

  • 공형윤
    • 한국인터넷방송통신학회논문지
    • /
    • 제10권2호
    • /
    • pp.151-157
    • /
    • 2010
  • MEMS(Micro Electro-Mechanical Systems) 분야의 급격한 발전은 저비용의 정보 처리 센싱 능력을 갖춘 센서의 발전에 박차를 가했다. 이러한 기술의 흐름은 강력하고 높은 확장성을 가지는 WSNs(Wireless Sensor Networks)을 위하여 더 많은 센서 간 연결을 위한 연구가 진행되고 있는 실정이다. WSNs의 자원부족, Ad-hoc 배치방법, 보다 광대해지는 규모는 센서 간 통신에서 안전성을 보다 중요한 문제로 인식하게 하고 있다. 센서 네트워크의 주요 고려사항은 에너지 효율이기 때문에, 보안 기술은 통신에서의 보안 특징과 그것을 수행하기 위해 계산해야하는 오버헤드 간 균형을 맞춰야한다. 본 논문에서는 새로운 보안 인식 다중경로 위치기반 라우팅 프로토콜을 개발하기 위하여 위치정보와 전송확률을 결합한다. 네트워크 시뮬레이터(ns-2)를 실행한 결과 보다 나은 성능을 얻을 수 있음을 알 수 있다.

무선 센서 네트워크를 위한 클러스터 내 노드 밀도 기반 트랜스포트 프로토콜 (A Robust Transport Protocol Based on Intra-Cluster Node Density for Wireless Sensor Networks)

  • 백철헌;모상만
    • 대한임베디드공학회논문지
    • /
    • 제10권6호
    • /
    • pp.381-390
    • /
    • 2015
  • The efficient design of a transport protocol contributes to energy conservation as well as performance improvement in wireless sensor networks (WSNs). In this paper, a node-density-aware transport protocol (NDTP) for intra-cluster transmissions in WSNs for monitoring physical attributes is proposed, which takes node density into account to mitigate congestion in intra-cluster transmissions. In the proposed NDTP, the maximum active time and queue length of cluster heads are restricted to reduce energy consumption. This is mainly because cluster heads do more works and consume more energy than normal sensor nodes. According to the performance evaluation results, the proposed NDTP outperforms the conventional protocol remarkably in terms of network lifetime, congestion frequency, and packet error rate.

Self-organization Scheme of WSNs with Mobile Sensors and Mobile Multiple Sinks for Big Data Computing

  • Shin, Ahreum;Ryoo, Intae;Kim, Seokhoon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권3호
    • /
    • pp.943-961
    • /
    • 2020
  • With the advent of IoT technology and Big Data computing, the importance of WSNs (Wireless Sensor Networks) has been on the rise. For energy-efficient and collection-efficient delivery of any sensed data, lots of novel wireless medium access control (MAC) protocols have been proposed and these MAC schemes are the basis of many IoT systems that leads the upcoming fourth industrial revolution. WSNs play a very important role in collecting Big Data from various IoT sensors. Also, due to the limited amount of battery driving the sensors, energy-saving MAC technologies have been recently studied. In addition, as new IoT technologies for Big Data computing emerge to meet different needs, both sensors and sinks need to be mobile. To guarantee stability of WSNs with dynamic topologies as well as frequent physical changes, the existing MAC schemes must be tuned for better adapting to the new WSN environment which includes energy-efficiency and collection-efficiency of sensors, coverage of WSNs and data collecting methods of sinks. To address these issues, in this paper, a self-organization scheme for mobile sensor networks with mobile multiple sinks has been proposed and verified to adapt both mobile sensors and multiple sinks to 3-dimensional group management MAC protocol. Performance evaluations show that the proposed scheme outperforms the previous schemes in terms of the various usage cases. Therefore, the proposed self-organization scheme might be adaptable for various computing and networking environments with big data.

Correlation Distance Based Greedy Perimeter Stateless Routing Algorithm for Wireless Sensor Networks

  • Mayasala, Parthasaradhi;Krishna, S Murali
    • International Journal of Computer Science & Network Security
    • /
    • 제22권1호
    • /
    • pp.139-148
    • /
    • 2022
  • Research into wireless sensor networks (WSNs) is a trendy issue with a wide range of applications. With hundreds to thousands of nodes, most wireless sensor networks interact with each other through radio waves. Limited computational power, storage, battery, and transmission bandwidth are some of the obstacles in designing WSNs. Clustering and routing procedures have been proposed to address these concerns. The wireless sensor network's most complex and vital duty is routing. With the Greedy Perimeter Stateless Routing method (GPSR), an efficient and responsive routing protocol is built. In packet forwarding, the nodes' locations are taken into account while making choices. In order to send a message, the GPSR always takes the shortest route between the source and destination nodes. Weighted directed graphs may be constructed utilising four distinct distance metrics, such as Euclidean, city block, cosine, and correlation distances, in this study. NS-2 has been used for a thorough simulation. Additionally, the GPSR's performance with various distance metrics is evaluated and verified. When compared to alternative distance measures, the proposed GPSR with correlation distance performs better in terms of packet delivery ratio, throughput, routing overhead and average stability time of the cluster head.

RSNT-cFastICA for Complex-Valued Noncircular Signals in Wireless Sensor Networks

  • Deng, Changliang;Wei, Yimin;Shen, Yuehong;Zhao, Wei;Li, Hongjun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권10호
    • /
    • pp.4814-4834
    • /
    • 2018
  • This paper presents an architecture for wireless sensor networks (WSNs) with blind source separation (BSS) applied to retrieve the received mixing signals of the sink nodes first. The little-to-no need of prior knowledge about the source signals of the sink nodes in the BSS method is obviously advantageous for WSNs. The optimization problem of the BSS of multiple independent source signals with complex and noncircular distributions from observed sensor nodes is considered and addressed. This paper applies Castella's reference-based scheme to Novey's negentropy-based algorithms, and then proposes a novel fast fixed-point (FastICA) algorithm, defined as the reference-signal negentropy complex FastICA (RSNT-cFastICA) for complex-valued noncircular-distribution source signals. The proposed method for the sink nodes is substantially more efficient than Novey's quasi-Newton algorithm in terms of computational speed under large numbers of samples, can effectively improve the power consumption effeciency of the sink nodes, and is significantly beneficial for WSNs and wireless communication networks (WCNs). The effectiveness and performance of the proposed method are validated and compared with three related BSS algorithms through theoretical analysis and simulations.

QA-MAC: QoS-Aware MAC Protocol for Wireless Sensor Networks

  • Kim, Seong-Cheol;Park, Hyun-Joo
    • Journal of information and communication convergence engineering
    • /
    • 제8권2호
    • /
    • pp.223-227
    • /
    • 2010
  • In this paper, we present a QoS-aware MAC protocol (QA-MAC) for cluster based wireless sensor networks (WSNs). QA-MAC is a TDMA-based scheduling protocol that minimizes the energy consumption in multi-hop WSNs and provides Quality of Service (QoS). A dynamic scheduling algorithm according to the number of member nodes, node traffics, and traffic priorities is suggested. The selected cluster head allocates time slots for all member nodes in the first TDMA schedule period of each round. During the second schedule period in each round, the cluster head makes a schedule for all data transmission. The proposed QA-MAC (QoS-Aware MAC) could save energy, reduce transmission delay, and support QoS.

A Node Scheduling Algorithm in Duty-Cycled Wireless Sensor Networks

  • Thi, Nga Dao;Dasgupta, Rumpa;Yoon, Seokhoon
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2015년도 춘계학술대회
    • /
    • pp.593-594
    • /
    • 2015
  • In wireless sensor networks (WSNs), due to the very low data rate, the sleeping schedule is usually used to save consumed energy and prolong the lifetime of nodes. However, duty-cycled approach can cause a high end-to-end (E2E) delay. In this paper, we study a node scheduling algorithm in WSNs such that E2E delay meets bounded delay with a given probability. We have applied the probability theory to spot the relationship between E2E delay and node interval. Simulation result illustrates that we can create the network to achieve given delay with prior probability and high energy use efficient as well.

  • PDF