• Title/Summary/Keyword: Wireless Sensor Networks(WSN)

Search Result 457, Processing Time 0.025 seconds

Static Worst-Case Energy and Lifetime Estimation of Wireless Sensor Networks

  • Liu, Yu;Zhang, Wei;Akkaya, Kemal
    • Journal of Computing Science and Engineering
    • /
    • v.4 no.2
    • /
    • pp.128-152
    • /
    • 2010
  • With the advance of computer and communication technologies, wireless sensor networks (WSNs) are increasingly used in many aspects of our daily life. However, since the battery lifetime of WSN nodes is restricted, the WSN lifetime is also limited. Therefore, it is crucial to determine this limited lifetime in advance for preventing service interruptions in critical applications. This paper proposes a feasible static analysis approach to estimating the worstcase lifetime of a WSN. Assuming known routes with a given sensor network topology and SMAC as the underlying MAC protocol, we statically estimate the lifetime of each sensor node with a fixed initial energy budget. These estimations are then compared with the results obtained through simulation which run with the same energy budget on each node. Experimental results of our research on TinyOS applications indicate that our approach can safely and accurately estimate worst-case lifetime of the WSN. To the best of our knowledge, our work is the first one to estimate the worst-case lifetime of WSNs through a static analysis method.

MAC Protocol considering Data Urgency for EH-WSN (EH-WSN에서 데이터의 긴급성을 고려한 MAC프로토콜)

  • Park, Gwanho;Park, Hyung-Kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2019.05a
    • /
    • pp.304-305
    • /
    • 2019
  • Wireless sensor networks are used in various applications due to the flexibility of network. In particular, the energy harvesting wireless sensor network (EH-WSN) has been introduced to solve the power limitation problem, and the application range of the sensor network is further expanded. In order to transmit the sensed data to the destination node, the MAC protocol considering the power of the nodes has been studied. The power situation and the urgency of the data are important elements of data transmission, and a medium access control protocol that comprehensively considers data urgency and power of nodes is required. In this paper, we propose a medium access control protocol which can select relay nodes according to power situation and urgency of data.

  • PDF

Dual Addressing Scheme in IPv6 over IEEE 802.15.4 Wireless Sensor Networks

  • Yang, Soo-Young;Park, Sung-Jin;Lee, Eun-Ju;Ryu, Jae-Hong;Kim, Bong-Soo;Kim, Hyung-Seok
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.674-684
    • /
    • 2008
  • This paper proposes a dual addressing scheme (DAS) for IPv6 over IEEE 802.15.4 wireless sensor networks (WSN). DAS combines a global unicast address to cope with association link changes and node mobility, and it links local addresses to lighten the overhead of the system to save energy and resources. This paper describes DAS address formats, address autoconfiguration, and address translation tables in the gateway. A detailed description of DAS is provided through examples. Simulations are performed to demonstrate the performance improvements of the DAS compared with the IPv6-based WSN, which uses the conventional single address.

  • PDF

A Power-based Pipelined-forwarding MAC Protocol for Energy Harvesting Wireless Sensor Networks (에너지 하베스팅 무선 센서네트워크을 위한 전력기반 Pipelined-forwarding MAC프로토콜)

  • Shim, Kyuwook;Park, Hyung-Kun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.68 no.1
    • /
    • pp.98-101
    • /
    • 2019
  • In this paper, we propose the power-based pipelined-forwarding MAC protocol which can select relay nodes according to the residual power and energy harvesting rate in EH-WSN (energy-harvesting wireless sensor networks). The proposed MAC follows a pipelined-forwarding scheme in which nodes repeatedly sleep and wake up in an EH-WSN environment and data is continuously transmitted from a high-level node to a low-level node. The sleep interval is adaptively controlled so that nodes with low energy harvesting rate can be charged sufficiently, thereby minimizing the transmission delay and increasing the network lifetime. Simulation shows that the proposed MAC protocol improves the balance of residual power and network lifetime.

Development of Real Time Monitoring System based on Context-awareness for Wireless Sensor Networks (무선 센서네트워크에서 상황인식기반 실시간 감시시스템 개발)

  • Jo, Kyoung-Jin;Kim, Hee-Dae;Lee, Hyun-Jo;Sim, Chun-Bo;Chang, Jae-Woo
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.4
    • /
    • pp.101-111
    • /
    • 2011
  • Due to recent development in wireless communication technologies and mobile information devices, the services on ubiquitous computing technology without time and place restriction have been spotlighted. Moreover, the interest of the Wireless Sensor Networks (WSNs) and context-awareness technologies have largely been escalating and their technologies utilization is active in the various applications such as healthcare, farm management and so on. However, the direct adaption of the existing context-awareness technique to the WSN technology has several drawbacks as follows. First, such systems waste precious energy of sensor nodes, due to unnecessary data transmissions. Secondly, since the existing work was designed to support only specific applications, it is required to implement a new context-awareness application for a specific purpose. Therefore, we, in this paper, propose a new real-time monitoring system based on context-awareness in WSNs. Our system not only enhances energy efficiency by reducing data transmissions by doing context-awareness on a sensor node, but also is scalable in terms of supporting new context-awareness functionalities through modularization.

Study of Information Maintenance Components in Wireless Network Environment based on Sensors (센서기반 무선 네트워크 환경에서 정보 유지관리에 관한 구성요소 연구)

  • Lee, Hyun-Chang;Xu, Chen-Lin;Shin, Seong-Yoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.11
    • /
    • pp.2640-2644
    • /
    • 2014
  • With the development of technology, wireless sensor networks (WSN) are wireless networks of consisting a large number of small and low-cost sensors. Wireless sensor networks facilitate collaboration to achieve the perception of information collection, processing and transmission tasks in deployment area. They have various purposes such as military, disaster relief, medical rescue, environmental monitoring, precision farming and manufacturing industry etc. Therefore, technologies for data maintaining technologies in sensor network environment is one of essential parts of sensor networks. In this paper, we present the essential particulars about data management technology at wireless sensor network environments and propound the issues. Further, we could organize and develop a systematic approach in solving the issues.

A Real-Time MAC Protocol with Extended Backoff Scheme for Wireless Sensor Networks

  • Teng, Zhang;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.341-346
    • /
    • 2011
  • Wireless sensor networks (WSNs) are formed by a great quantity of sensor nodes, which are consisted of battery-powered and some tiny devices. In WSN, both efficient energy management and Quality of Service (QoS) are important issues for some applications. Real-time services are usually employed to satisfy QoS requirements in critical environment. This paper proposes a real-time MAC (Medium Access Control) protocol with extended backoff scheme for wireless sensor networks. The basic idea of the proposed protocol employs (m,k)-firm constraint scheduling which is to adjust the contention window (CW) around the optimal value for decreasing the dynamic failure and reducing collisions DBP (Distant Based Priority). In the proposed protocol, the scheduling algorithm dynamically assigns uniform transmitting opportunities to each node. Numerical results reveal the effect of the proposed backoff mechanism.

Performance Analysis on Wireless Sensor Network using LDPC Codes over Node-to-node Interference

  • Choi, Sang-Min;Moon, Byung-Hyun
    • Proceedings of the Korea Society of Information Technology Applications Conference
    • /
    • 2005.11a
    • /
    • pp.77-80
    • /
    • 2005
  • Wireless sensor networks(WSN) technology has various applications such as surveillance and information gathering in the uncontrollable area of human. One of major issues in WSN is the research for reducing the energy consumption and reliability of data. A system with forward error correction(FEC) can provide an objective reliability while using less transmission power than a system without FEC. In this paper, we propose to use LDPC codes of various code rate(0.53, 0.81, 0.91) for FEC for WSN. Also, we considered node-to-node interference in addition to AWGN channel. The proposed system has not only high reliable data transmission at low SNR, but also reduced transmission power usage.

  • PDF

An Abnormal Breakpoint Data Positioning Method of Wireless Sensor Network Based on Signal Reconstruction

  • Zhijie Liu
    • Journal of Information Processing Systems
    • /
    • v.19 no.3
    • /
    • pp.377-384
    • /
    • 2023
  • The existence of abnormal breakpoint data leads to poor channel balance in wireless sensor networks (WSN). To enhance the communication quality of WSNs, a method for positioning abnormal breakpoint data in WSNs on the basis of signal reconstruction is studied. The WSN signal is collected using compressed sensing theory; the common part of the associated data set is mined by exchanging common information among the cluster head nodes, and the independent parts are updated within each cluster head node. To solve the non-convergence problem in the distributed computing, the approximate term is introduced into the optimization objective function to make the sub-optimization problem strictly convex. And the decompressed sensing signal reconstruction problem is addressed by the alternating direction multiplier method to realize the distributed signal reconstruction of WSNs. Based on the reconstructed WSN signal, the abnormal breakpoint data is located according to the characteristic information of the cross-power spectrum. The proposed method can accurately acquire and reconstruct the signal, reduce the bit error rate during signal transmission, and enhance the communication quality of the experimental object.

A Robust Wearable u-Healthcare Platform in Wireless Sensor Network

  • Lee, Seung-Chul;Chung, Wan-Young
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.465-474
    • /
    • 2014
  • Wireless sensor network (WSN) is considered to be one of the most important research fields for ubiquitous healthcare (u-healthcare) applications. Healthcare systems combined with WSNs have only been introduced by several pioneering researchers. However, most researchers collect physiological data from medical nodes located at static locations and transmit them within a limited communication range between a base station and the medical nodes. In these healthcare systems, the network link can be easily broken owing to the movement of the object nodes. To overcome this issue, in this study, the fast link exchange minimum cost forwarding (FLE-MCF) routing protocol is proposed. This protocol allows real-time multi-hop communication in a healthcare system based on WSN. The protocol is designed for a multi-hop sensor network to rapidly restore the network link when it is broken. The performance of the proposed FLE-MCF protocol is compared with that of a modified minimum cost forwarding (MMCF) protocol. The FLE-MCF protocol shows a good packet delivery rate from/to a fast moving object in a WSN. The designed wearable platform utilizes an adaptive linear prediction filter to reduce the motion artifacts in the original electrocardiogram (ECG) signal. Two filter algorithms used for baseline drift removal are evaluated to check whether real-time execution is possible on our wearable platform. The experiment results shows that the ECG signal filtered by adaptive linear prediction filter recovers from the distorted ECG signal efficiently.