• Title/Summary/Keyword: Wireless Packet Data Communication

Search Result 265, Processing Time 0.027 seconds

Protocol-Aware Radio Frequency Jamming inWi-Fi and Commercial Wireless Networks

  • Hussain, Abid;Saqib, Nazar Abbas;Qamar, Usman;Zia, Muhammad;Mahmood, Hassan
    • Journal of Communications and Networks
    • /
    • v.16 no.4
    • /
    • pp.397-406
    • /
    • 2014
  • Radio frequency (RF) jamming is a denial of service attack targeted at wireless networks. In resource-hungry scenarios with constant traffic demand, jamming can create connectivity problems and seriously affect communication. Therefore, the vulnerabilities of wireless networks must be studied. In this study, we investigate a particular type of RF jamming that exploits the semantics of physical (PHY) and medium access control (MAC) layer protocols. This can be extended to any wireless communication network whose protocol characteristics and operating frequencies are known to the attacker. We propose two efficient jamming techniques: A low-data-rate random jamming and a shot-noise based protocol-aware RF jamming. Both techniques use shot-noise pulses to disrupt ongoing transmission ensuring they are energy efficient, and they significantly reduce the detection probability of the jammer. Further, we derived the tight upper bound on the duration and the number of shot-noise pulses for Wi-Fi, GSM, and WiMax networks. The proposed model takes consider the channel access mechanism employed at the MAC layer, data transmission rate, PHY/MAC layer modulation and channel coding schemes. Moreover, we analyze the effect of different packet sizes on the proposed jamming methodologies. The proposed jamming attack models have been experimentally evaluated for 802.11b networks on an actual testbed environment by transmitting data packets of varying sizes. The achieved results clearly demonstrate a considerable increase in the overall jamming efficiency of the proposed protocol-aware jammer in terms of packet delivery ratio, energy expenditure and detection probabilities over contemporary jamming methods provided in the literature.

RRSEB: A Reliable Routing Scheme For Energy-Balancing Using A Self-Adaptive Method In Wireless Sensor Networks

  • Shamsan Saleh, Ahmed M.;Ali, Borhanuddin Mohd.;Mohamad, Hafizal;Rasid, Mohd Fadlee A.;Ismail, Alyani
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1585-1609
    • /
    • 2013
  • Over recent years, enormous amounts of research in wireless sensor networks (WSNs) have been conducted, due to its multifarious applications such as in environmental monitoring, object tracking, disaster management, manufacturing, monitoring and control. In some of WSN applications dependent the energy-efficient and link reliability are demanded. Hence, this paper presents a routing protocol that considers these two criteria. We propose a new mechanism called Reliable Routing Scheme for Energy-Balanced (RRSEB) to reduce the packets dropped during the data communications. It is based on Swarm Intelligence (SI) using the Ant Colony Optimization (ACO) method. The RRSEB is a self-adaptive method to ensure the high routing reliability in WSNs, if the failures occur due to the movement of the sensor nodes or sensor node's energy depletion. This is done by introducing a new method to create alternative paths together with the data routing obtained during the path discovery stage. The goal of this operation is to update and offer new routing information in order to construct the multiple paths resulting in an increased reliability of the sensor network. From the simulation, we have seen that the proposed method shows better results in terms of packet delivery ratio and energy efficiency.

A Design of Voice Over Sensor Network (VoSN) Base Station with Multi-Channel Support (다중 채널을 지원하는 Voice over Sensor Network(VoSN) Base Station 설계)

  • Lee, Hoon Jae;Lee, Jae Hyoung;Kang, Min Soo;Cho, Sung Ho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39C no.1
    • /
    • pp.90-96
    • /
    • 2014
  • IEEE802.15.4 that is a standard for sensor networks is mainly used the wireless personal area networks such as ZigBee networks and it features low-power, low-speed data communication. However, recently research for interworking sensor network based voice communication and Session Initiation Protocol (SIP) for long-range, multi-user support has been actively conducted. In this paper, we designed a integrated base station based existing systems for interworking sensor networks based voice communication and SIP. We measured number of packet and delay according to increase the number of users to evaluate the performance of designed Base Station.

An Energy and Delay Efficient Hybrid MAC Protocol for Multi-Hop Wireless Sensor Networks (멀티 홉 무선센서네트워크에서 에너지와 지연에 효율적인 하이브리드 MAC 프로토콜)

  • Jeon, Jun-Heon;Kim, Seong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.2
    • /
    • pp.471-476
    • /
    • 2015
  • In this paper, we propose an energy efficient hybrid MAC protocol for multi-hop wireless sensor networks. The proposed MAC protocol used a hybrid mechanism, in which contention-based MAC protocol and contention free MAC protocol are combined. The sensor nodes located far from the sink node usually send few data packet since they try to send measured data by themselves. So contention-based MAC protocol is useful among them. But other nodes located near sink node usually have lots of data packets since they plays as a relay node. Contention-based MAC protocol among them is not suitable. Using contention-based MAC protocol in heavy data traffic environment, packet collisions and transmission delay may increase. In this paper, slot assignment between sender nodes by sink node is used. The proposed mechanism is efficient in energy and latency. Results showed that our MAC protocol outperformed other protocol in terms of data packet delivery delay and energy consumption.

Energy efficient watchman based flooding algorithm for IoT-enabled underwater wireless sensor and actor networks

  • Draz, Umar;Ali, Tariq;Zafar, Nazir Ahmad;Alwadie, Abdullah Saeed;Irfan, Muhammad;Yasin, Sana;Ali, Amjad;Khattak, Muazzam A. Khan
    • ETRI Journal
    • /
    • v.43 no.3
    • /
    • pp.414-426
    • /
    • 2021
  • In the task of data routing in Internet of Things enabled volatile underwater environments, providing better transmission and maximizing network communication performance are always challenging. Many network issues such as void holes and network isolation occur because of long routing distances between nodes. Void holes usually occur around the sink because nodes die early due to the high energy consumed to forward packets sent and received from other nodes. These void holes are a major challenge for I-UWSANs and cause high end-to-end delay, data packet loss, and energy consumption. They also affect the data delivery ratio. Hence, this paper presents an energy efficient watchman based flooding algorithm to address void holes. First, the proposed technique is formally verified by the Z-Eves toolbox to ensure its validity and correctness. Second, simulation is used to evaluate the energy consumption, packet loss, packet delivery ratio, and throughput of the network. The results are compared with well-known algorithms like energy-aware scalable reliable and void-hole mitigation routing and angle based flooding. The extensive results show that the proposed algorithm performs better than the benchmark techniques.

Control of mobile robot system using wireless data communication module (근거리 무선 통신 모듈을 이용한 이동 로봇 시스템의 제어)

  • Kwak, Jae-Hyuk;Jeong, Sang-Hoon;Lim, Joon-Hong
    • Proceedings of the KIEE Conference
    • /
    • 2002.11c
    • /
    • pp.509-512
    • /
    • 2002
  • We propose a control method for mobile robot system using the bluetooth. The control packet is defined and used for control of the mobile robot. The control packet is composed of behavior components and has reserved packets for future working. The control packet has to be simple and provide commands to the mobile robot, since the bluetooth has a limited bandwidth. The data transmission rate and the distance, which can control the mobile robot in various circumstances, for example, corridor, yard, and room are measured by some experiments.

  • PDF

A re-route method for reliable data transport in Ad Hoc Networks (Ad Hoc 망에서 신뢰성 있는 데이터 전송을 위한 경로 재설정 기법)

  • 한정안;백종근;김병기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.3A
    • /
    • pp.276-287
    • /
    • 2004
  • An ad hoc network is infra(Base Sstation or Access Point) free wireless mobile communication technology. Mobile nodes function as routers and servers in ad hoc networks. Many routing protocols for ad hoc network have been proposed. If any route is broken owing to moving node, source must repair broken route again. But route repair technology after route collapses is not suitable to transmit real-time data packet for QoS guarantee. So this paper presents route repair technology that prevents route from breaking. If intermediate node moves to critical section, the node issues handoff packet and sends the packet to the next node. After next node receives handoff packet, the node broadcasts route request packet to the previous node for intermediate node. Finally, even if intermediate node moves out of the routing region, the source can continuously transmit data packets to the destination through the new path.

Design of Zigbee based Portable ECG monitoring system (지그비 기반의 휴대형 심전도 모니터링 시스템 설계)

  • Hong, Joo-Hyun;Kim, Nam-Jin;Cha, Eun-Jong;Lee, Tae-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.51-53
    • /
    • 2006
  • This paper proposes a portable ECG monitoring system, which integrates uptodate PDA and RF communication technology. The aim of the study is to acquire the subject's biomedical signal without any constraint. It has two types of transmission mode, which are total signal transmission mode and HR(heart rate)/SC(step count) transmission mode. In audition, wireless communication technology uses Zigbee Wireless PAN and can work in low-power mode, which is one of the advantages of ZiBbee communication technology. The developed system is composed of a transmitter and a receiver. The transmitter has three-axial acceleration sensor. ECG amplifier and Zigbee communication controller. In total signal transmission mode, it can send data 50 packets per second whose transmission speed corresponds to 300 ECG samples and 60 acceleration samples. In HR/SG transmission mode, it can calculate heart rate from EEG data with 216 samples per second and step count from acceleration data and send a packet every cardiac cycle. The receiver forwards the received data to PDA, where the data can be stored and displayed. Therefore, the developed device enables to continuous monitoring for Activities of Daily Living(ADL). Also, this method will reduce medical costs in the aged society.

  • PDF

Design and Implementation of Magnetic Induction based Wireless Underground Communication System Supporting Distance Measurement

  • Kim, Min-Joon;Chae, Sung-Hun;Shim, Young-Bo;Lee, Dong-Hyun;Kim, Myung-Jin;Moon, Yeon-Kug;Kwon, Kon-Woo
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4227-4240
    • /
    • 2019
  • In this paper, we present our proposed magnetic induction based wireless communication system. The proposed system is designed to perform communication as well as distance measurement in underground environments. In order to improve the communication quality, we propose and implement the adaptive channel compensation technique. Based on the fact that the channel may be fast time-varying, we keep track of the channel status each time the data is received and accordingly compensate the channel coefficient for any change in the channel status. By using the proposed compensation technique, the developed platform can reliably communicate over distances of 10m while the packet error rate is being maintained under 5%. We also implement the distance measurement block that is useful for various applications that should promptly estimate the location of nearby nodes in communication. The distance between two nodes in communication is estimated by generating a table describing pairs of the magnetic signal strength and the corresponding distance. The experiment result shows that the platform can estimate the distance of a node located within 10m range with the measurement error less than 50cm.

Smart Grid Cooperative Communication with Smart Relay

  • Ahmed, Mohammad Helal Uddin;Alam, Md. Golam Rabiul;Kamal, Rossi;Hong, Choong Seon;Lee, Sungwon
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.640-652
    • /
    • 2012
  • Many studies have investigated the smart grid architecture and communication models in the past few years. However, the communication model and architecture for a smart grid still remain unclear. Today's electric power distribution is very complex and maladapted because of the lack of efficient and cost-effective energy generation, distribution, and consumption management systems. A wireless smart grid communication system can play an important role in achieving these goals. In this paper, we describe a smart grid communication architecture in which we merge customers and distributors into a single domain. In the proposed architecture, all the home area networks, neighborhood area networks, and local electrical equipment form a local wireless mesh network (LWMN). Each device or meter can act as a source, router, or relay. The data generated in any node (device/meter) reaches the data collector via other nodes. The data collector transmits this data via the access point of a wide area network (WAN). Finally, data is transferred to the service provider or to the control center of the smart grid. We propose a wireless cooperative communication model for the LWMN.We deploy a limited number of smart relays to improve the performance of the network. A novel relay selection mechanism is also proposed to reduce the relay selection overhead. Simulation results show that our cooperative smart grid (coopSG) communication model improves the end-to-end packet delivery latency, throughput, and energy efficiency over both the Wang et al. and Niyato et al. models.