• Title/Summary/Keyword: Wireless Packet

Search Result 1,335, Processing Time 0.026 seconds

Performance analysis of packet transmission for a Signal Flow Graph based time-varying channel over a Wireless Network (무선 네트워크 time-varying 채널 상에서 Signal Flow Graph를 이용한 패킷 전송 성능 분석)

  • Kim, Sang-Yang;Park, Hong-Seong
    • Proceedings of the KIEE Conference
    • /
    • 2004.05a
    • /
    • pp.65-67
    • /
    • 2004
  • Change of state of Channel between two wireless terminals which is caused by noise and multiple environmental conditions for happens frequently from the Wireles Network. So, When it is like that planning a wireless network protocol or performance analysis, it follows to change of state of time-varying channel and packet the analysis against a transmission efficiency is necessary. In this paper, analyzes transmission time of a packet and a packet in a time-varying and packet based Wireless Network. To reflecte the feature of the time-varying channel, we use a Signal Flow Graph model. From the model the mean of transmission time and the mean of queue length of the packet are analyzed in terms of the packet distribution function, the packet transmission service time, and the PER of the time-varying channel.

  • PDF

A Model to Investigate the Security Challenges and Vulnerabilities of Cloud Computing Services in Wireless Networks

  • Desta Dana Data
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.107-114
    • /
    • 2023
  • The study provides the identification of vulnerabilities in the security issues by Wireless Network. To achieve it the research focus on packet flow analysis, end to end data communication, and the security challenges (Cybercrime, insider threat, attackers, hactivist, malware and Ransomware). To solve this I have used the systematic literature review mechanisms and demonstrative tool namely Wireshark network analyzer. The practical demonstration identifies the packet flow, packet length time, data flow statistics, end- to- end packet flow, reached and lost packets in the network and input/output packet statics graphs. Then, I have developed the proposed model that used to secure the Wireless network solution and prevention vulnerabilities of the network security challenges. And applying the model that used to investigate the security challenges and vulnerabilities of cloud computing services is used to fulfill the network security goals in Wireless network. Finally the research provides the model that investigate the security challenges and vulnerabilities of cloud computing services in wireless networks

Wireless Packet Scheduling Algorithm for OFDMA System Based on Time-Utility and Channel State

  • Ryu, Seung-Wan;Ryu, Byung-Han;Seo, Hyun-Hwa;Shin, Mu-Yong;Park, Sei-Kwon
    • ETRI Journal
    • /
    • v.27 no.6
    • /
    • pp.777-787
    • /
    • 2005
  • In this paper, we propose an urgency- and efficiency-based wireless packet scheduling (UEPS) algorithm that is able to schedule real-time (RT) and non-real-time (NRT) traffics at the same time while supporting multiple users simultaneously at any given scheduling time instant. The UEPS algorithm is designed to support wireless downlink packet scheduling in an orthogonal frequency division multiple access (OFDMA) system, which is a strong candidate as a wireless access method for the next generation of wireless communications. The UEPS algorithm uses the time-utility function as a scheduling urgency factor and the relative status of the current channel to the average channel status as an efficiency indicator of radio resource usage. The design goal of the UEPS algorithm is to maximize throughput of NRT traffics while satisfying quality-of-service (QoS) requirements of RT traffics. The simulation study shows that the UEPS algorithm is able to give better throughput performance than existing wireless packet scheduling algorithms such as proportional fair (PF) and modified-largest weighted delay first (M-LWDF), while satisfying the QoS requirements of RT traffics such as average delay and packet loss rate under various traffic loads.

  • PDF

Publish/Subscribe Protocol in Wireless Sensor Networks: Improved Reliability and Timeliness

  • Davis, Ernesto Garcia;Auge, Anna Calveras
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.4
    • /
    • pp.1527-1552
    • /
    • 2018
  • The rapidly-evolving demand of applications using wireless sensor networks in several areas such as building and industrial automation or smart cities, among other, makes it necessary to determine and provide QoS support mechanisms which can satisfy the requirements of applications. In this paper we propose a mechanism that establishes different QoS levels, based on Publish/Subscribe model for wireless networks to meet application requirements, to provide reliable delivery of packet and timeliness. The first level delivers packets in a best effort way. The second one intends to provide reliable packet delivery with a novel approach for Retransmission Timeout (RTO) calculation, which adjusts the RTO depending on the subscriber Packet Delivery Ratio (PDR). The third one provides the same reliable packet delivery as the second one, but in addition, it provides data aggregation trying to be efficient in terms of energy consumption and the use of network bandwidth. The last one provides timeliness in the packet delivery. We evaluate each QoS Level with several performance metrics such as PDR, Message Delivery Ratio, Duplicated and Retransmitted Packet Ratio and Packet Timeliness Ratio to demonstrate that our proposal provides significant improvements based on the increase of the PDR obtained.

A Study on Development of Attack System on the 2.4 GHz AES Wireless Keyboard (2.4 GHz AES 무선 키보드 공격 시스템 구축에 관한 연구)

  • Lee, Ji-Woo;Sim, Bo-Yeon;Park, Aesun;Han, Dong-Guk
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.1
    • /
    • pp.233-240
    • /
    • 2017
  • Due to a recent rise in use of a wireless keyboard and mouse, attacks which take user's input information or control user's computer remotely exploiting the physical vulnerability in the wireless communication have been reported. Especially, MouseJack, announced by Bastille Network, attacks 2.4 GHz wireless keyboards and mice through exploiting vulnerability of each manufacturer's receiver. Unlike other attacks that have been revealed, this allows to attack AES wireless keyboards. Nonetheless, there is only a brief overview of the attack but no detailed information on this attacking method. Therefore, in this paper we will analyze the Microsoft 2.4 GHz wireless mouse packet and propose a way to set the packet configuration for HID packet injection simulating a wireless mouse. We also develop a system with 2.4 GHz AES wireless keyboard HID packet injection using the proposed packet and demonstrate via experiment that HID packet injection is possible through the system we built.

A Study of TCP Performance with Snoop Protocol over Fading Wireless Links

  • Cho, Yang-Bum;Cho, Sung-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.2 no.4
    • /
    • pp.214-218
    • /
    • 2004
  • In this paper, we have analyzed TCP performance over wireless correlated fading links with and without Snoop protocol. For a given value of the packet error rate, TCP performance without Snoop protocol is degraded as the fading is getting fast (i.e. the user moves fast). When Snoop protocol is introduced in the base station, TCP performance is enhanced in most wireless environments. Especially the performance enhancement derived from using Snoop protocol is large in fast fading channel. This is because packet errors become random and sporadic in fast fading channel and these random packet errors (mostly single packet errors) can be compensated efficiently by Snoop protocol's local packet retransmissions. But Snoop protocol can't give a large performance improvement in slow fading environments where long bursts of packet errors occur. Concerning to packet error rate, Snoop protocol results in the highest performance enhancement in the channel with mid-high values of packet error rate. This means Snoop protocol cannot fully fulfill its ability under too low or too high packet error rate environments.

A Study on Improving TCP Performance in Wireless Network (무선 네트워크에서 TCP성능향상을 위한 연구)

  • Kim, Chang-Hee
    • Journal of Digital Contents Society
    • /
    • v.10 no.2
    • /
    • pp.279-289
    • /
    • 2009
  • As the TCP is the protocol designed for the wired network that packet loss probability is very low, because TCP transmitter takes it for granted that the packet loss by the wireless network characteristics is occurred by the network congestion and lowers the transmitter's transmission rate, the performance is degraded. In this article, we suggest the newly improved algorithm using two parameters, the local retransmission time value and the local retransmission critical value to the BS based on the Snoop. This technique adjusts the base stations local retransmission timer effectively according to the wireless link status to recover the wireless packet loss rapidly. We checked that as a result of the suggested algorithm through various simulations, A-Snoop protocol improve more the wireless TCP transmission rate by recovering the packet loss effectively in the wireless link that the continuous packet loss occur than the Snoop protocol.

  • PDF

An Enhanced Transmission Mechanism for Supporting Quality of Service in Wireless Multimedia Sensor Networks

  • Cho, DongOk;Koh, JinGwang;Lee, SungKeun
    • Journal of Internet Computing and Services
    • /
    • v.18 no.6
    • /
    • pp.65-73
    • /
    • 2017
  • Congestion occurring at wireless sensor networks(WSNs) causes packet delay and packet drop, which directly affects overall QoS(Quality of Service) parameters of network. Network congestion is critical when important data is to be transmitted through network. Thus, it is significantly important to effectively control the congestion. In this paper, new mechanism to guarantee reliable transmission for the important data is proposed by considering the importance of packet, configuring packet priority and utilizing the settings in routing process. Using this mechanism, network condition can be maintained without congestion in a way of making packet routed through various routes. Additionally, congestion control using packet service time, packet inter-arrival time and buffer utilization enables to reduce packet delay and prevent packet drop. Performance for the proposed mechanism was evaluated by simulation. The simulation results indicate that the proposed mechanism results to reduction of packet delay and produces positive influence in terms of packet loss rate and network lifetime. It implies that the proposed mechanism contributes to maintaining the network condition to be efficient.

Performance of a DS/CDMA Packet Network in an Indoor Wireless Infrared Channel

  • Kim, Jin-Young
    • Proceedings of the IEEK Conference
    • /
    • 2000.06a
    • /
    • pp.213-216
    • /
    • 2000
  • In this paper, performance of a CDMA-based packet transmission system is analyzed and simulated in a wireless infrared channel. The indoor wireless infrared channel is modeled as a non-directed diffuse link. The pulse position modulation (PPM) is used as a modulation scheme. From the simulation results, it is shown that the RS coding is very effective in improving the packet-delay characteristics of the CDMA-based packet transmission system. The performance improvement is more significant especially when the infrared channel is in a worse condition.

  • PDF

Comparison about TCP and Snoop protocol on wired and wireless integrated network (유무선 혼합망에서 TCP와 Snoop 프로토콜 비교에 관한 연구)

  • Kim, Chang Hee
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.5 no.2
    • /
    • pp.141-156
    • /
    • 2009
  • As the TCP is the protocol designed for the wired network that packet loss probability is very low, because TCP transmitter takes it for granted that the packet loss by the wireless network characteristics is occurred by the network congestion and lowers the transmitter's transmission rate, the performance is degraded. The Snoop Protocol was designed for the wired network by putting the Snoop agent module on the BS(Base Station) that connect the wire network to the wireless network to complement the TCP problem. The Snoop agent cash the packets being transferred to the wireless terminal and recover the loss by resending locally for the error occurred in the wireless link. The Snoop agent blocks the unnecessary congestion control by preventing the dupack (duplicate acknowledgement)for the retransmitted packet from sending to the sender and hiding the loss in the wireless link from the sender. We evaluated the performance in the wired/wireless network and in various TCP versions using the TCP designed for the wired network and the Snoop designed for the wireless network and evaluated the performance of the wired/wireless hybrid network in the wireless link environment that the continuous packet loss occur.