• Title/Summary/Keyword: Wireless Multi-hop Video Streaming

Search Result 5, Processing Time 0.021 seconds

Optimizing the Joint Source/Network Coding for Video Streaming over Multi-hop Wireless Networks

  • Cui, Huali;Qian, Depei;Zhang, Xingjun;You, Ilsun;Dong, Xiaoshe
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.800-818
    • /
    • 2013
  • Supporting video streaming over multi-hop wireless networks is particularly challenging due to the time-varying and error-prone characteristics of the wireless channel. In this paper, we propose a joint optimization scheme for video streaming over multi-hop wireless networks. Our coding scheme, called Joint Source/Network Coding (JSNC), combines source coding and network coding to maximize the video quality under the limited wireless resources and coding constraints. JSNC segments the streaming data into generations at the source node and exploits the intra-session coding on both the source and the intermediate nodes. The size of the generation and the level of redundancy influence the streaming performance significantly and need to be determined carefully. We formulate the problem as an optimization problem with the objective of minimizing the end-to-end distortion by jointly considering the generation size and the coding redundancy. The simulation results demonstrate that, with the appropriate generation size and coding redundancy, the JSNC scheme can achieve an optimal performance for video streaming over multi-hop wireless networks.

NETWORK-ADAPTIVE ERROR CONTROL FOR VIDEO STREAMING OVER WIRELESS MULTI-HOP NETWORKS

  • Bae, Jung-Tae;Kim, Jong-Won
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2009.01a
    • /
    • pp.385-389
    • /
    • 2009
  • Multi-hop wireless mesh networks (WMNs) suffer from significant packet losses due to insufficient available bandwidth and high channel error probability. To conquer packet losses, end-to-end (E2E) error control schemes have been proposed. However, in WMNs, E2E error control schemes are not effective in adapting to the time-varying network condition due to large delay. Thus, in this paper, we propose a network-adaptive error control for video streaming over WMNs that flexibly operates E2E and hop-by-hop (HbH) error control according to network condition. Moreover, to provide lightweight support at intermediate nodes for HbH error control, we use path-partition-based adaptation. To verify the proposed scheme, we implement it and evaluate its transport performance through MPEG-2 video streaming over a real IEEE 802.11a-based WMN testbed.

  • PDF

Monitoring-based Coordination of Network-adaptive FEC for Wireless Multi-hop Video Streaming (무선 멀티 홉 비디오 스트리밍을 위한 모니터링 기반의 네트워크 적응적 FEC 코디네이션)

  • Choi, Koh;Yoo, Jae-Yong;Kim, Jong-Won
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.2A
    • /
    • pp.114-126
    • /
    • 2011
  • Video streaming over wireless multi-hop networks(WMNs) contains the following challenges from channel fading and variable bandwidth of wireless channel, and it cause degradation of video streaming performance. To overcome the challenges, currently, WMNs can use Forward Error Correction (FEC) mechanism. In WMNs, traditional FEC schemes, E2E-FEC and HbH-FEC, for video streaming are applied, but it has long transmission delay, high computational complexity and inefficient usage of resource. Also, to distinguish network status in streaming path, it has limitation. In this paper, we propose monitoring-based coordination of network-adaptive hop-to-end(H2E) FEC scheme. To enable proposed scheme, we apply a centralized coordinator. The coordinator has observing overall monitoring information and coordinating H2E-FEC mechanism. Main points of H2E-FEC is distinguishing operation range as well as selecting FEC starting node and redundancy from monitored results in coordination. To verify the proposed scheme, we perform extensive experiment over the OMF(Orbit Measurement Framework) and IEEE 802.1la-based multi-hop WMN testbed, and we carry out performance improvement, 17%, from performance comparison by existing FEC scheme.

Cross-layer Video Streaming Mechanism over Cognitive Radio Ad hoc Information Centric Networks

  • Han, Longzhe;Nguyen, Dinh Han;Kang, Seung-Seok;In, Hoh Peter
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.11
    • /
    • pp.3775-3788
    • /
    • 2014
  • With the increasing number of the wireless and mobile networks, the way that people use the Internet has changed substantively. Wireless multimedia services, such as wireless video streaming, mobile video game, and mobile voice over IP, will become the main applications of the future wireless Internet. To accommodate the growing volume of wireless data traffic and multimedia services, cognitive radio (CR) and Information-Centric Network (ICN) have been proposed to maximize the utilization of wireless spectrum and improve the network performance. Although CR and ICN have high potential significance for the future wireless Internet, few studies have been conducted on collaborative operations of CR and ICN. Due to the lack of infrastructure support in multi-hop ad hoc CR networks, the problem is more challenging for video streaming services. In this paper, we propose a Cross-layer Video Streaming Mechanism (CLISM) for Cognitive Radio Ad Hoc Information Centric Networks (CRAH-ICNs). The CLISM included two distributed schemes which are designed for the forwarding nodes and receiving nodes in CRAH-ICNs. With the cross-layer approach, the CLISM is able to self-adapt the variation of the link conditions without the central network controller. Experimental results demonstrate that the proposed CLISM efficiently adjust video transmission policy under various network conditions.

A Study of Mobile Ad-hoc Network Protocols for Ultra Narrowband Video Streaming over Tactical Combat Radio Networks (초협대역 영상전송 전투무선망을 위한 Mobile Ad-hoc Network 프로토콜 연구)

  • Seo, Myunghwan;Kim, Kihun;Ko, Yun-Soo;Kim, Kyungwoo;Kim, Donghyun;Choi, Jeung Won
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.371-380
    • /
    • 2020
  • Video is principal information that facilitates commander's immediate command decision. Due to fading characteristics of radio link, however, it is difficult to stably transmit video in a multi-hop wireless environment. In this paper, we propose a MANET structure composed of a link adaptive routing protocol and a TDMA MAC protocol to stably transmit video traffic in a ultra-narrowband video streaming network. The routing protocol can adapt to link state change and select a stable route. The TDMA protocol enables collision-free video transmission to a destination using multi-hop dynamic resource allocation. As a result of simulation, the proposed MANET structure shows better video transmission performance than proposed MANET structure without link quality adaption, AODV with CSMA/CA, and OLSR with CSMA/CA structures.