• 제목/요약/키워드: Wireless Energy Transmission

검색결과 651건 처리시간 0.023초

Adjusting Transmission Power for Real-Time Communications in Wireless Sensor Networks

  • Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • 제10권1호
    • /
    • pp.21-26
    • /
    • 2012
  • As the new requirements for wireless sensor networks are emerging, real-time communications is becoming a major research challenge because resource-constrained sensor nodes are not powerful enough to accommodate the complexity of the protocol. In addition, an efficient energy management scheme has naturally been a concern in wireless sensor networks for a long time. However, the existing schemes are limited to meeting one of these two requirements. To address the two factors together, we propose real-time communications with two approaches, a protocol for satisfied conditions and one for unsatisfied. Under the satisfied requirement, existing real-time protocol is employed. On the other hand, for the unsatisfied requirement, the newly developed scheme replaces the existing scheme by adjusting the transmission range of some surplus nodes. By expanding the transmission range, the end-to-end delay is shortened because the number of intermediate nodes decreases. These nodes conserve their energy for real-time communications by avoiding other activities such as sensing, forwarding, and computing. Finally, simulation results are given to demonstrate the feasibility of the proposed scheme in high traffic environments.

A Survey of the Transmission-Power-Control Schemes in Wireless Body-Sensor Networks

  • Lee, Woosik;Kim, Heeyoul;Hong, Min;Kang, Min-Goo;Jeong, Seung Ryul;Kim, Namgi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1854-1868
    • /
    • 2018
  • A wireless body-sensor network (WBSN) refers to a network-configured environment in which sensors are placed on both the inside and outside of the human body. The sensors are much smaller and the energy is more constrained when compared to traditional wireless sensor network (WSN) environments. The critical nature of the energy-constraint issue in WBSN environments has led to numerous studies on the reduction of energy consumption of WBSN sensors. The transmission-power-control (TPC) technique adjusts the transmission-power level (TPL) of sensors in the WBSN and reduces the energy consumption that occurs during communications. To elaborate, when transmission sensors and reception sensors are placed in various parts of the human body, the transmission sensors regularly send sensor data to the reception sensors. As the reception sensors receive data from the transmission sensors, real-time measurements of the received signal-strength indication (RSSI), which is the value that indicates the channel status, are taken to determine the TPL that suits the current-channel status. This TPL information is then sent back to the transmission sensors. The transmission sensors adjust their current TPL based on the TPL that they receive from the reception sensors. The initial TPC algorithm made linear or binary adjustments using only the information of the current-channel status. However, because various data in the WBSN environment can be utilized to create a more efficient TPC algorithm, many different types of TPC algorithms that combine human movements or fuse TPC with other algorithms have emerged. This paper defines and discusses the design and development process of an efficient TPC algorithm for WBSNs. We will describe the WBSN characteristics, model, and closed-loop mechanism, followed by an examination of recent TPC studies.

에너지 효율적인 전송을 위한 지연 허용 패킷의 유지시간 제어 알고리즘 (Algorithm of Holding Time Control Using Delay-Tolerant Packet for Energy-Efficient Transmission)

  • 류승민;최원석;최성곤
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제5권4호
    • /
    • pp.87-94
    • /
    • 2016
  • 제안된 논문은 기지국의 에너지 효율을 최대화하기 위한 에너지 전송 방식에 관한 것으로, 기존의 데이터 처리량과 송신전력 사이의 지수 함수적 관계에 따른 비효율적 문제를 해결함으로써 서비스의 유형에 따른 데이터를 분류하고, 무선 네트워크 환경의 기지국에서 사용자 들에게 전송 되는 최적의 데이터 량에 따른 에너지 최적화 지점을 찾아내는 방법이다. 이를 위해, 기지국에서 사용자에게 전송되는 데이터의 양 및 유지시간을 조절하여 데이터 전송의 에너지 효율 최적화 지점을 찾을 수 있는 EETA 알고리즘(Energy-Efficient Transmission Algorithm)을 제안한다. 결과적으로 제안한 방식은 기존 기지국 대비 에너지 효율이 약 10% 향상됨을 알 수 있다.

Simultaneous Information and Power Transfer for Multi-antenna Primary-Secondary Cooperation in Cognitive Radio Networks

  • Liu, Zhi Hui;Xu, Wen Jun;Li, Sheng Yu;Long, Cheng Zhi;Lin, Jia Ru
    • ETRI Journal
    • /
    • 제38권5호
    • /
    • pp.941-951
    • /
    • 2016
  • In this paper, cognitive radio and simultaneous wireless information and power transfer (SWIPT) are effectively combined to design a spectrum-efficient and energy-efficient transmission paradigm. Specifically, a novel SWIPT-based primary-secondary cooperation model is proposed to increase the transmission rate of energy/spectrum constrained users. In the proposed model, a multi-antenna secondary user conducts simultaneous energy harvesting and information forwarding by means of power splitting (PS), and tries to maximize its own transmission rate under the premise of successfully assisting the data delivery of the primary user. After the problem formulation, joint power splitting and beamforming optimization algorithms for decode-and-forward and amplify-and-forward modes are presented, in which we obtain the optimal PS factor and beamforming vectors using a golden search method and dual methods. Simulation results show that the proposed SWIPTbased primary-secondary cooperation schemes can obtain a much higher level of performance than that of non-SWIPT cooperation and non-cooperation schemes.

A Study on Distributed Self-Reliance Wireless Sensing Mechanism for Supporting Data Transmission over Heterogeneous Wireless Networks

  • Caytiles, Ronnie D.;Park, Byungjoo
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제12권3호
    • /
    • pp.32-38
    • /
    • 2020
  • The deployment of geographically distributed wireless sensors has greatly elevated the capability of monitoring structural health in social-overhead capital (SOC) public infrastructures. This paper deals with the utilization of a distributed mobility management (DMM) approach for the deployment of wireless sensing devices in a structural health monitoring system (SHM). Then, a wireless sensing mechanism utilizing low-energy adaptive clustering hierarchy (LEACH)-based clustering algorithm for smart sensors has been analyzed to support the seamless data transmission of structural health information which is essentially important to guarantee public safety. The clustering of smart sensors will be able to provide real-time monitoring of structural health and a filtering algorithm to boost the transmission of critical information over heterogeneous wireless and mobile networks.

Schedule communication routing approach to maximize energy efficiency in wireless body sensor networks

  • Kaebeh, Yaeghoobi S.B.;Soni, M.K.;Tyagi, S.S.
    • Smart Structures and Systems
    • /
    • 제21권2호
    • /
    • pp.225-234
    • /
    • 2018
  • E-Health allows you to supersede the central patient wireless healthcare system. Wireless Body Sensor Network (WBSN) is the first phase of the e-Health system. In this paper, we aim to understand e-Health architecture and configuration, and attempt to minimize energy consumption and latency in transmission routing protocols during restrictive latency in data delivery of WBSN phase. The goal is to concentrate on polling protocol to improve and optimize the routing time interval and schedule communication to reduce energy utilization. In this research, two types of network models routing protocols are proposed - elemental and clustering. The elemental model improves efficiency by using a polling protocol, and the clustering model is the extension of the elemental model that Destruct Supervised Decision Tree (DSDT) algorithm has been proposed to solve the time interval conflict transmission. The simulation study verifies that the proposed models deliver better performance than the existing BSN protocol for WBSN.

유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜 (Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks)

  • 앙현호
    • 한국콘텐츠학회논문지
    • /
    • 제8권1호
    • /
    • pp.177-185
    • /
    • 2008
  • 응용분야를 계속 확장해가고 있는 무선 센서네트워크에서 매체접근제어 (MAC)에 관한 연구는 주로 에너지 효율을 높이는데 집중되어왔으며 전송지연(Latency)에 관한 연구는 상대적으로 적다. 그러나 센서 네트워크의 특성상 다중 홉(multi-hop) 전송이 빈번하게 일어나는 환경에서 종단 간 전송지연은 특히 시간 종속적인 응용분야에서는 중요한 성능상 제약이 될 수 있다. 본 논문에서는 분산적인 전송전력제어방식을 이용하여 다중 링크를 동시에 개설할 수 있도록 함으로써 센서네트워크의 전송 전력을 줄임과 동시에 네트워크의 공간 활용도를 향상시키고 전송지연시간을 개선 할 수 있는 매체접근제어(MAC) 방식을 제안하였다. 시뮬레이션을 통한 성능 검증 결과 제안하는 방식인 TPCS-MAC은 센서노드의 전력소모를 줄임과 동시에 특히 다중 홉(multi-hop) 센서네트워크에서 발생하는 종단 간 지연 (end-to-end latency) 문제를 개선하는 것으로 판명되었다.

Wireless Energy Transmission High-Efficiency DC-AC Converter Using High-Gain High-Efficiency Two-Stage Class-E Power Amplifier

  • Choi, Jae-Won;Seo, Chul-Hun
    • Journal of electromagnetic engineering and science
    • /
    • 제11권3호
    • /
    • pp.161-165
    • /
    • 2011
  • In this paper, a high-efficiency DC-AC converter is used for wireless energy transmission. The DC-AC convertter is implemented by combining the oscillator and power amplifier. Given that the conversion efficiency of a DC-AC converter is strongly affected by the efficiency of the power amplifier, a high-efficiency power amplifier is implemented using a class-E amplifier structure. Also, because of the low output power of the oscillator connected to the input stage of the power amplifier, a high-gain two-stage power amplifier using a drive amplifier is used to realize a high-output power DC-AC converter. The high-efficiency DC-AC converter is realized by connecting the oscillator to the input stage of the high-gain high-efficiency two-stage class-E power amplifier. The output power and the conversion efficiency of the DC-AC converter are 40.83 dBm and 87.32 %, respectively, at an operation frequency of 13.56 MHz.

Energy Efficiency Analysis of Cellular Downlink Transmission with Network Coding over Rayleigh Fading Channels

  • Zhu, Jia
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제7권3호
    • /
    • pp.446-458
    • /
    • 2013
  • Recently, energy-efficient cellular transmission has received considerable research attention to improve the energy efficiency of wireless communication. In this paper, we consider a cellular network consisting of one base station (BS) and multiple user terminals and explore the network coding for enhancing the energy efficiency of cellular downlink transmission from BS to users. We propose the network coded cellular transmission scheme and conduct its energy consumption analysis with target outage probability and data rate requirements in Rayleigh fading environments. Then, the energy efficiency in Bits-per-Joule is further defined and analyzed to evaluate the number of bits delivered per Joule of energy cost. Numerical results show that the network coded cellular transmission significantly outperforms the traditional cellular transmission in terms of energy efficiency, implying that given a Joule of energy cost, the network coded cellular transmission scheme can deliver more bits than the traditional cellular transmission.

Context-Aware Mobile Gateway Relocation Scheme for Clustered Wireless Sensor Networks

  • Encarnacion, Nico N.;Yang, Hyunho
    • Journal of information and communication convergence engineering
    • /
    • 제10권4호
    • /
    • pp.365-371
    • /
    • 2012
  • In recent years, researchers have been attracted to clustering methods to improve communication and data transmission in a network. Compared with traditional wireless networks, wireless sensor networks are energy constrained and have lower data rates. The concept of implementing a clustering algorithm in an existing project on gateway relocation is being explored here. Low energy adaptive clustering hierarchy (LEACH) is applied to an existing study on relocating a gateway. The study is further improved by moving the gateway to a specific cluster based on the number or significance of the events detected. The protocol is improved so that each cluster head can communicate with a mobile gateway. The cluster heads are the only nodes that can communicate with the mobile gateway when it (the mobile gateway) is out of the cluster nodes' transmission range. Once the gateway is in range, the nodes will begin their transmission of real-time data. This alleviates the load of the nodes that would be located closest to the gateway if it were static.