• Title/Summary/Keyword: Wireless Drive

Search Result 61, Processing Time 0.021 seconds

Derivation of Closed Form Channel Capacity Using Confluent Hypergeometric Function for Wireless MIMO

  • Kabir, S.M. Humayun;Pham, Van-Su;Mai, Linh;Yoon, Giwan
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.05a
    • /
    • pp.47-50
    • /
    • 2008
  • Multiple-input multiple-output (MIMO) is an efficient technology to increase data rate in wireless networks due to bandwidth and power limitations. Data transmission rate between transmitter and receiver is determined by channel capacity. MIMO has anadvantage of reliable communication over wireless channel because of utilizing the channel capacity properly. In this letter, we drive a new formula, closed form capacity formula, using confluent hypergeometric function.

  • PDF

Isolated Power Supply for Multiple Gate Drivers using Wireless Power Transfer System with Single-Antenna Receiver

  • Lim, Chang-Jong;Park, Shihong
    • Journal of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.1382-1390
    • /
    • 2017
  • This paper presents a power supply for gate drivers, which uses a magnetic resonance wireless power transfer system. Unlike other methods where multiple antennas are used to supply power for the gate drivers, the proposed method uses a single antenna in an insulated receiver to make multiple mutually isolated power supplies. The power transmitted via single antenna is distributed to multiple power supplies for gate drivers through resonant capacitors connected in parallel that also block DC bias. This approach has many advantages over other methods, where each gate driver needs to be supplied with power using multiple receiver antennas. The proposed method will therefore lead to a reduction in production costs and circuit area. Because the proposed circuit uses a high resonance frequency of 6.78 MHz, it is possible to implement a transmitter and a receiver using a small-sized spiral printed-circuit-board-type antenna. This paper used a single phase-leg circuit configuration to experimentally verify the performance characteristics of the proposed method.

Design of In-Wheel Type Switched Reluctance Motor for Electric Vehicle Traction and Wireless Charging (전기자동차 트랙션 및 무선 충전용 인휠타입 스위치드 릴럭턴스 전동기 설계)

  • Lukman, Grace Firsta;Son, Dong-Ho;Lee, Dong-Hee;Ahn, Jin-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1866-1872
    • /
    • 2017
  • This paper presents the design of in-wheel type Switched Reluctance Motor (SRM) which can be used as both traction motor and power pickup device in a wireless charging system of electric vehicles. The SRM acts as a traction drive in driving mode and a power receiver in charging mode to avoid any additional weights. Double stator axial field SRM is used due to its structure that can be mounted inside the wheel. The charging circuit is integrated with the asymmetric converter and phase windings of SRM, reducing the cost and size of the system. Magnetic resonance is implemented to increase the efficiency. Simulations done in Maxwell and Simplorer verify the effectiveness of the proposed system.

5.8GHz 25W Microwave Wireless Power Transmission System Development and Measurement (5.8GHz 25W 무선전력전송 시스템 개발 및 측정)

  • Lee, Seong Hun;Son, Myung Sik
    • Journal of the Semiconductor & Display Technology
    • /
    • v.18 no.1
    • /
    • pp.21-24
    • /
    • 2019
  • In this paper, 5.8GHz 25W microwave wireless power transmission system was developed. The transmission system is composed of a signal generator, a 1W drive amplifier, a 25W power amplifier, and a circularly polarized transmission antenna. The receiving system was fabricated with an integrated receiver that combines a circularly polarized receiving antenna, a pass band filter, and an RF-DC converter. And a multi-integrated receiver had twelve parts, including an integrated receiver. Under the conditions, voltage and current were measured for the system at 5cm intervals from a minimum distance of 5cm to a maximum distance of 80cm. The power was calculated for the system. The results of the system are shown in tables and graphs. The power decreases with distance, but the power does not drop sharply due to a multi-integrated receiver.

Power Transmission Mechanism and Data Communication of the Dosimeter using Contactless Powerless Transmission (선량계의 무선전력 전송 메카니즘과 데이터 통신 시스템 구현)

  • Lee, Seung-Min;Chung, Sung-In;Lee, Heung-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.814-819
    • /
    • 2010
  • This study proposes the antenna circuit design for the transmitting wireless power, the development of the RF non-contact type Dosimeter. That is, the study designed the optimization and numerical analysis of the antenna circuit for the antenna design of 13.56MHz over the frequency bands for transmitting wireless power. We studied the needed items in the existing RF type Dosimeter with battery to implement the wireless power non-contact Dosimeter within the battery. We compared to the real measurement value as calculating the value of the inductance and capacitance through the numerical analysis for the antenna LC resonance using the theory of the electromagnetic induction method. This method to drive low power is designed to simplify the circuit and to improve the efficiency of the rectifier. We convince our research contributes not only to understand the simplified circuit and miniaturization, but also to help the design and application technology of the wireless power transmit system which is received power supply with wireless.

Relaying Protocols and Delay Analysis for Buffer-aided Wireless Powered Cooperative Communication Networks

  • Zhan, Jun;Tang, Xiaohu;Chen, Qingchun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3542-3566
    • /
    • 2018
  • In this paper, we investigate a buffer-aided wireless powered cooperative communication network (WPCCN), in which the source and relay harvest the energy from a dedicated power beacon via wireless energy transfer, then the source transmits the data to the destination through the relay. Both the source and relay are equipped with an energy buffer to store the harvested energy in the energy transfer stage. In addition, the relay is equipped with a data buffer and can temporarily store the received information. Considering the buffer-aided WPCCN, we propose two buffer-aided relaying protocols, which named as the buffer-aided harvest-then-transmit (HtT) protocol and the buffer-aided joint mode selection and power allocation (JMSPA) protocol, respectively. For the buffer-aided HtT protocol, the time-averaged achievable rate is obtained in closed form. For the buffer-aided JMSPA protocol, the optimal adaptive mode selection scheme and power allocation scheme, which jointly maximize the time-averaged throughput of system, are obtained by employing the Lyapunov optimization theory. Furthermore, we drive the theoretical bounds on the time-averaged achievable rate and time-averaged delay, then present the throughput-delay tradeoff achieved by the joint JMSPA protocol. Simulation results validate the throughput performance gain of the proposed buffer-aided relaying protocols and verify the theoretical analysis.

A Study on Green Drive control for fuel consumption reduction of the vehicle based on traffic information at the bottleneck (차량의 연료 소비 감소를 위한 병목 도로에서 도로 교통 정보 기반 Green Drive 제어에 관한 연구)

  • Cho, Dae-Hyun;Lee, Chung-Hoon;Lim, Myung-Seob
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.13 no.3
    • /
    • pp.162-165
    • /
    • 2012
  • In this paper, the method of controlling velocity between joining vehicles at the point of bottleneck using information and communications technology of WAVE method based V2V and V2I are proposed for the driving with high fuel efficiency. Using the derived fuel-efficiency comparative analysis model, it was shown that the proposed method's fuel efficiency is better than traffic light method demanding periodically vehicle's stop. Also, this method provides the derivation algorithm for deceleration and acceleration for controlling velocity between vehicles approaching bottleneck area.

Identification of bridge bending frequencies through drive-by monitoring compensating vehicle pitch detrimental effect

  • Lorenzo Benedetti;Lorenzo Bernardini;Antonio Argentino;Gabriele Cazzulani;Claudio Somaschini ;Marco Belloli
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.4
    • /
    • pp.305-321
    • /
    • 2022
  • Bridge structural health monitoring with the aim of continuously assessing structural safety and reliability represents a topic of major importance for worldwide infrastructure managers. In the last two decades, due to their potential economic and operational advantages, drive-by approaches experienced growing consideration from researcher and engineers. This work addresses two technical topics regarding indirect frequency estimation methods: bridge and vehicle dynamics overlapping, and bridge expansion joints impact. The experimental campaign was conducted on a mixed multi-span bridge located in Lombardy using a Ford Galaxy instrumented with a mesh of wireless accelerometers. The onboard time series were acquired for a number of 10 passages over the bridge,performed at a travelling speed of 30 km/h, with no limitations imposed to traffic. Exploiting an ad-hoc sensors positioning, pitch vehicle motion was compensated, allowing to estimate the first two bridge bending frequencies from PSD functions; moreover, the herein adopted approach proved to be insensitive to joints disturbance. Conclusively, a sensitivity study has been conducted to trace the relationship between estimation accuracy and number of trips considered in the analysis. Promising results were found, pointing out a clear positive correlation especially for the first bending frequency.

A Study on the Evaluation Technique of Quantified Damage for Powertrain System on Traveled Courses (주행노면에 따른 동력장치의 상대 피로 손상도 평가 기법에 관한 연구)

  • Lee, Sang-Ho;Lee, Jeong-Hwan;Kang, Do-Kyung;Goo, Sang-Hwa
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.12
    • /
    • pp.74-81
    • /
    • 2007
  • This paper focuses on improvement of the reliability for endurance test to serve military automobiles. The driving loads have been measured by use of the wireless telemetry system for the drive shaft of the 4-wheel drive car. In order to analyze the transmission input torque and engine revolution of loads of the test courses and unpaved road have been made use of the revolution counting and cumulative damage by miner's rule. This paper presents the evaluated result for quantified damage about the test courses and roads.

A Rotary Capacitive-Wireless Power Transfer System for Power Supply of a Wireless Sensor System on Marine Rotating Shaft (선박 회전축의 무선 센서 시스템의 전원 공급을 위한 회전식 정전용량-무선 전력 전송 시스템)

  • Van Ai Hoang;Young Chul Lee
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.1
    • /
    • pp.63-70
    • /
    • 2023
  • In this work, a capacitive wireless power transfer (C-WPT) system is presented for wireless sensor system (WSS) applications in marine propulsion shafts. For a single Q factor on both sides of the coupling capacitor and reactive power removal from the circuit, a double-sided LCLC converter and transformers topology are designed to drive the rotary C-WPT system for WSS on the shaft. Parallel-connected parallel plate rotating capacitors with a capacitance of 170 pF are designed and implemented for the C-WPT system on a snow rotating shaft. In the experimental results, the C-WPT system achieved a transmission efficiency of 66.67% with 7.8 W output power at 3 mm distance and 1 MHz operating frequency. Therefore, it was proved that the fabricated C-WPT system can supply power to the WSS of the rotating shaft.