• Title/Summary/Keyword: Wireless Charging

Search Result 190, Processing Time 0.023 seconds

A Performance Evaluation of a Heat Dissipation Design for a Lithium-Ion Energy Storage System Using Infrared Thermal Imaging (적외선 열화상을 활용한 리튬 이온 ESS의 방열설계 성능평가에 관한 연구)

  • Kim, Eun-Ji;Lee, Gyung-Il;Kim, Jae-Yeol
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.105-110
    • /
    • 2020
  • The global battery market is rapidly growing due to the development of vehicles(EV) and wireless electronic products. In particular logistics robots, which hielp to produce EVs, have attracted much interest in research in Korea Because logistics sites and factories operate continuously for 24 hours, the technology that can dramatically increase the operation time of the logistics equipment is rapidly developing, and various high-level technologies are required for the batteries used in. for example, logistics robots. These required technologies include those that enable rapid battery charging as well wireless charging to charge batteries while moving. The development of these technologies, however, result in increasing explosions and topical accidents involving rapid charging batteries These accidents due to the thermal shock caused by the heat generated during the charging of the battery cell. In this study, a performance evaluation of a heat dissipation design using infrared thermal imaging was performed on an energy storage systrm(Ess) applied with an internal heat conduction cooling method using a heating plate.

Design and Control of Adjustable Turn-ratio LLC Converter for High-efficiency Operation of Wired/Wireless Integrated Charging System for Electric Vehicles (전기자동차용 유·무선 통합 충전 시스템의 고효율 동작을 위한 권선비 가변형 LLC 컨버터 설계 및 제어 방안)

  • Jo, Hyeon-Woo;Sim, Dong-Hyeon;Lee, Ju-A;Son, Won-Jin;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.3
    • /
    • pp.237-246
    • /
    • 2022
  • This paper proposes a method to adjust the turn ratio of a transformer for the high-efficiency operation of an LLC converter with a wide input range in a wired/wireless integrated charging system for electric vehicles. The characteristics of the inductive power transfer converter in the integrated charging system are analyzed to design the LLC converter, and the DC-link voltage range is derived. The aspect of voltage gain following each parameter of the LLC converter is analyzed, and the resonant network and transformer are designed. Based on the designed parameters, the feasibility of the design and control method is verified by implementing the operation of the LLC converter according to the DC-link and battery voltages.

Wireless Power Transfer System Based on Semi-random Magnetic Flux (준랜덤 자속을 사용하는 무선전력 전송 시스템)

  • Heo, Joon;Jeon, Seong-Jeub
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.8
    • /
    • pp.1222-1229
    • /
    • 2017
  • In this paper, a wireless power transfer system with semi-random magnetic flux is studied. Directions of semi-random magnetic flux are changing almost randomly which can induce voltages at coils irrelevantly to coil's posture. So, very convenient charging is possible. Semi-random magnetic flux can be generated by a coil system which has three coils perpendicular to each other and carrying currents with different frequencies. A prototype for charging mobile devices is constructed and tested, and the proposal is verified.

Design of Wireless Rechargeable RTLS Tag Chargeable Pad (무선 충전 가능한 RTLS 태그와 충전패드)

  • Kim, Tae Yong
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.05a
    • /
    • pp.71-72
    • /
    • 2016
  • In this paper, RTLS tag for high-precision positioning and wireless power transmission module is designed in order to solve the battery replacement problem. Wireless charging pad is available to charge the 4 RTLS tags at once. Charging time of the proposed protype in 50 cm distance is 22 minutes based on 3V reference voltage and 500 mW.

  • PDF

A Robot System Maintained with Renewable Energy

  • Kim, Jaehyun;Moon, Chanwoo
    • International journal of advanced smart convergence
    • /
    • v.8 no.1
    • /
    • pp.98-105
    • /
    • 2019
  • Energy autonomy is a system that is sustained by energy from an independent and distributed source such as renewable energy. In this paper, we propose a robotic energy autonomy in which a robot obtains energy from a renewable energy source with a limited storage capacity. As an energy transfer method, wireless power transfer is used to solve the problem of the conventional contact charging method, mechanical complexity, and to obtain high energy transfer efficiency, the image information is used to align the transmitting and receiving coils accurately. A small scale thermoelectric energy source with boost converter, battery charger, and wireless power transfer coil is constructed and an actual charging experiment is conducted to verify the proposed autonomy system.

A 6.78 MHz Constant Current and Constant Voltage Wireless Charger for E-mobility Applications (E-모빌리티 응용을 위한 6.78MHz 정전압 정전류 무선 충전기)

  • Tran, Manh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.142-144
    • /
    • 2019
  • Nowadays, multi-MHz wireless power transfer (WPT) system has received a great concern of study due to its desirable characteristics such as user convenience, system compact and better safety as compared to the conventional DC-DC with cord. This paper presents a solution for WPT Lithium Batteries charger with Constant Current (CC) and Constant Voltage (CV) charging process. The proposed system consists of a high frequency class D power amplifier, a pair of PCB coil, transformable high-order resonant network and a full-bridge rectifier. The charger can be implemented CC /CV charging profile thanks to automatic reconfigurable resonant compensator. Therefore, the battery can be fully charged without the help of an additional DC/DC converter. The simulation and 50W-6.78-MHz hardware experimental results are presented to verify the feasibility of the proposed method and to evaluate the performance of the proposed wireless battery charger.

  • PDF

A Study on The Development of High-Efficiency Transmitting and Receiving Coils For Wireless Charging of Drones (드론 무선 충전을 위한 고효율 송, 수신 코일 개발에 관한 연구)

  • Lim, Jong-Gyun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.2
    • /
    • pp.213-218
    • /
    • 2022
  • In this paper, a technology for a high-efficiency wireless power transmission transmitting and receiving coil that can wirelessly charge a drone is introduced. The drone station implements the ability to charge the battery wirelessly without the need to remove the battery to charge the drone's battery. In order to charge the drone's battery in the shortest time, wireless charging efficiency must be high. In order to increase the wireless charging efficiency of the drone station, a method for manufacturing high-efficiency transmitting and receiving coils and a performance measurement method are presented. Transmitting and receiving coils were manufactured considering the size and weight of the drone so as not to interfere with the flight of the drone. Efficiency of 88% or more was realized at a distance of 40mm or more between the transmitting and receiving coils.

Magnetic Resonant Wireless Power Transfer with Rearranged Configurations

  • Kang, Seok Hyon;Jung, Chang Won
    • Journal of electromagnetic engineering and science
    • /
    • v.17 no.2
    • /
    • pp.76-85
    • /
    • 2017
  • We investigate the indirect-fed magnetic resonant wireless power transfer (MR-WPT) system for wireless charging for mobile devices by rearranging the loops and coils. Conventional MR-WPT is difficult to apply to consumer electronic products because of the arrangement of the resonators. In addition, there are restrictions for charging using a wireless technology, which depend on the circumstances of the usage scenarios. For practical applications, we analyzed the transfer efficiency of the MR-WPT system with various combinations and positions of resonators. Three rearranged configurations (Out-Out, Out-In, In-In) have been considered and experimentally investigated using hollow pipe loops and wire copper coils. There were four types of loops and two types of coils; each one had a different diameter and thickness. The results of the measurements show that the trends of the transfer efficiencies for the three configurations were similar. A transfer efficiency of 82.5% was achieved at a 35-cm distance between the 60-cm diameter transmitter (Tx) and receiver (Rx) coils.

Implementation of Implantable Bluetooth Bio-telemetry System for Transmitting Acoustic Signals in the Body with Wireless Recharging Function (무선 충전 가능한 블루투스 방식의 체내 음향신호 전송용 이식형 바이오 텔레메트리 시스템 구현)

  • Lee, Sang-June;Kim, Myoung Nam;Lee, Jyung Hyun;Lim, Hyung-Gyu;Cho, Jin-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.18 no.5
    • /
    • pp.652-662
    • /
    • 2015
  • It is necessary to develop small, implantable bio-telemetry systems which can measure and transmit patients' bio-signals from internal body to external receiver. When measuring bio-signals, like electrical bio-signals, acoustic bio-signal measurement has also a big clinical usefulness. But, sound signal has larger frequency bandwidth than any other bio-signals. When considering these issues, a wireless telemetry system which has rapid data transmission rate proportional to wide frequency bandwidth is necessary to be developed. The bluetooth module is used to overcome the data rate limitation caused by the large frequency bandwidth. In this paper, a novel multimedia bluetooth biotelemetry system was developed which consists of transmitter module located in the body and receiver device located outside of the body. The transmitter consists of microphone, bluetooth, and wireless charging device. And the receiver consists of bluetooth and codec system. The sound inside the skin is captured by microphone and sent to receiver by bluetooth while charging. The wireless charging system constantly supplies the electric power to the system. To verify the performance of the developed system, an in vitro experiment has been performed. The results show that the proposed biotelemetry system has ability to acquire the sound signals under the skin.

Elementary MAC Scheme Based on Slotted ALOHA for Wireless Passive Sensor Networks (무선 수동형 센서 망을 위한 Slotted ALOHA 기반의 기본적인 MAC 방식)

  • Choi, Cheon Won;Seo, Heewon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.4
    • /
    • pp.20-26
    • /
    • 2016
  • A wireless passive sensor network is a network which, by letting RF sources supply energy to sensor nodes, is - at least theoretically - able to live an eternal life without batteries. Due to the technological immaturity, however, a wireless passive sensor network still has many difficulties; energy scarcity, non-simultaneity of energy reception and data transmission and inefficiency in data transmission occurring at sensor nodes. Considering such practical constraints, in this paper, we propose an elementary MAC scheme supporting many sensor nodes to deliver packets to a sink node. Based on a time structure in which a charging interval for charging capacitors by using received and an acting interval for communicating with a sink node are alternately repeated, the proposed MAC scheme delivers packets to a sink node according to slotted ALOHA. In general, a contention-type scheme tends to exhibit relatively low throughput. Thus, we multilaterally evaluate the throughput performance achieved by the proposed MAC scheme using a simulation method. Simulation results show that the network-wide throughput performance can be enhanced by properly setting the length of acting interval.