• Title/Summary/Keyword: Wireless Body Area Network

Search Result 133, Processing Time 0.025 seconds

Energy-Aware Configuration Management with Guaranteed Lifetime of Network in Multi-hop WBAN (무선 신체 망에서 망의 생존시간을 보장하는 에너지 인지 망 구성 관리 기법)

  • Seo, Su-Ho;Nah, Jae-Wook;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.10B
    • /
    • pp.981-987
    • /
    • 2009
  • Recently, the study on wireless body area network for providing ubiquitous healthcare services has been actively done, including the standardization of the IEEE and others. Wireless body area network is usually configured in tree format using multi-hop communication mode due to the power limitation and the characteristics of human body. In this case, differently from existing sensor network, the wireless body area network tends to be disconnected due to the frequent movement of human body. The number of connections which can be supported at each node has some limitations due to the constraint imposed on power consumption. In this paper, we have proposed a heuristic algorithm for optimal selection of parent node with guaranteed QoS for a disconnected node, which considers the priority on packet transmission. Simulation has been performed to evaluate the performance of the proposed algorithm.

Energy-aware Management in Wireless Body Area Network System

  • Zhang, Xu;Xia, Ying;Luo, Shiyan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.949-966
    • /
    • 2013
  • Recently, Wireless Body Area Network (WBAN) has promise to revolutionize human daily life. The need for multiple sensors and constant monitoring lead these systems to be energy hungry and expensive with short operating lifetimes. In this paper, we offer a review of existing work of WBAN and focus on energy-aware management in it. We emphasize that nodes computation, wireless communication, topology deployment and energy scavenging are main domains for making a long-lived WBAN. We study the popular power management technique Dynamic Voltage and Frequency Scaling (DVFS) and identify the impact of slack time in Dynamic Power Management (DPM), and finally propose an enhanced dynamic power management method to schedule scaled jobs at slack time with the goal of saving energy and keeping system reliability. Theoretical and experimental evaluations exhibit the effectiveness and efficiency of the proposed method.

Efficient Interference Cancellation Scheme for Wireless Body Area Network

  • Bae, Jung-Nam;Choi, Young-Hoon;Kim, Jin-Young;Kwon, Jang-Woo;Kim, Dong-In
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.167-174
    • /
    • 2011
  • In this paper, we propose and simulate an efficient interference cancellation scheme with an optimal ordering successive interference cancellation (SIC) algorithm for ultra wideband (UWB)/multiple-input-multiple-output (MIMO) systems in a wireless body area network (WBAN). When there are several wireless communication devices on a human body, multiple access interference (MAI) usually occurs. To mitigate the effect of MAI and achieve additional diversity gain, we utilize SIC with an optimal ordering algorithm. A zero correlation duration (ZCD) code with robust MAI capability is employed as a spread code for UWB systems in a multi-device WBAN environment. The performance of the proposed scheme is evaluated in terms of the bit error rate (BER). Simulation results confirm that the BER performance can be improved significantly if the proposed interference cancellation scheme and the ZCD code are jointly employed.

Modeling and Analysis of Multi-type Failures in Wireless Body Area Networks with Semi-Markov Model (무선 신체 망에서 세미-마르코프 모델을 이용한 다중 오류에 대한 모델링 및 분석)

  • Wang, Song;Chun, Seung-Man;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.9B
    • /
    • pp.867-875
    • /
    • 2009
  • The reliability of wireless body area networks is an important research issue since it may jeopardize the vital human life, unless managed properly. In this article, a new modeling and analysis of node misbehaviors in wireless body area networks is presented, in the presence of multi-type failures. First, the nodes are classified into types in accordance with routing capability. Then, the node behavior in the presence of failures such as energy exhaustion and/or malicious attacks has been modeled using a novel Semi-Markov process. The proposed model is very useful in analyzing reliability of WBANs in the presence of multi-type failures.

Development Brief of A Body Area Network for Ubiquitous Healthcare : An Introduction to Ubiquitous Biomedical Systems Development Center

  • Hong Joo-Hyun;Kim Nam-Jin;Cha Eun-Jong;Lee Tae-Soo
    • Journal of Biomedical Engineering Research
    • /
    • v.26 no.5
    • /
    • pp.331-335
    • /
    • 2005
  • The fusion technology of small sensor and wireless communication was followed by various application examples of the embedded system, where the social infrastructural facilities and ecological environment were wirelessly monitored. In addition, this technology represents the primary application area being extended into the healthcare field. In this study, a body area network for ubiquitous healthcare is presented. More specifically this represents a wireless biomedical signal acquisition device characterized by small size, low power consumption, pre-processing and archiving capability. Using this device, a new method for monitoring vital signs and activity is created. A PDA-based wireless sensor network enables patients to be monitored during their daily living, without any constraints. Therefore, the proposed method can be used to develop Activities of Daily Living (ADL) monitoring devices for the elderly or movement impaired people. A medical center would be able to remotely monitor the current state of elderly people and support first-aid in emergency cases. In addition, this method will reduce medical costs in society, where the average life expectancy is increasing.

Hybrid Priority Medium Access Control Scheme for Wireless Body Area Networks (무선 인체통신 네트워크를 위한 복합 우선순위 MAC 기법)

  • Lee, In-Hwan;Lee, Gun-Woo;Cho, Sung-Ho;Choo, Sung-Rae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.9B
    • /
    • pp.1305-1313
    • /
    • 2010
  • Last few years, wireless personal area network (WPAN) has been widely researched for various healthcare applications. Due to restriction of device hardware (e.g., energy and memory), we need to design a highly-versatile MAC layer protocol for WBAN (Wireless Body Area Network). In addition, when an emergency occurs to a patient, a priority mechanism is necessitated for a urgent message to get through to the final destination. This paper presents a priority mechanism referred to as hybrid priority MAC for WBAN. Through extensive simulation, we show the proposed MAC protocol can minimize the average packet latency for urgent data. Thus, when patients have an emergency situation, our MAC allows adequate assistance time and medical treatment for patients. The simulation based on NS-2 shows that our Hybrid Priority MAC has the good performance and usability.

Improved TDMA with Superframe Structure-based CSMA/CA MAC protocol for Wireless Body Area Network (WBAN을 지원하기 위한 개선된 슈퍼프레임 구조를 가지는 TDMA 기반의 CSMA/CA MAC 프로토콜)

  • Lee, Jae-Soo;Ahn, Jeong-Keun;Yun, Chan-Young
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.1
    • /
    • pp.87-93
    • /
    • 2012
  • Due to the development of information and communication, there is a rising interest on WBAN(Wireless Body Area Network) that maintain and check the human being health. According to the application of different quality of service and a special mechanism for transferring medical data are required in WBAN environment. In this paper, we proposed the new formed superframe that has CSMA/CA based TDMA scheduling and CSMA/CA used IEEE 802.15.4 in order to process emergency data and on-demand data in WBAN environment. We estimated performance of the proposed MAC protocol by compared performance of other MAC protocols that are IEEE 802.15.4 MAC protocl and Z-MAC protocol has contention access period based TDMA scheduling.

UWB based MODEM Technology and RFIC Property Overview for Wireless Human Body Communication (인체 무선통신용 소출력 UWB변복조 기술개발 및 RFIC화에 관한 연구)

  • Cha, Jae-Sang;Kim, Eun-Cheol;Kim, Jin-Young;Kim, Jai-Hyun
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.133-138
    • /
    • 2009
  • In this paper, we propose a ZCD (Zero Correlation Duration) code based Ultra Wide Band(UWB) MODEM(modulation and demodulation) technique for WBAN as a hunman body wireless communication operating in WBAN (Wireless Body Area Network) environment. We certified ZCD code based UWB schemes are available for hunman body wireless communications by various simulation and performance analysis using WBAN transmission channels. Furthermore, we suggested some possibility of RFIC implementation related to human body based UWB communication module by presenting some related examples.

  • PDF

Medical BAN 기술 동향

  • Lee, Hyeong-Su
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.5
    • /
    • pp.104-109
    • /
    • 2008
  • MBAN(Medical Wireless Body Area Network)은 인체 내부에 이식한 장비를 인체 외부에서 모니터링하는 인체 이식형 의료 분야와 인체 표면이나 $3{\sim}5$미터내 인체의 주변에서 일어나는 신체 부착형 의료분야로 정의할 수 있다. 본 고에서는 기존 MBAN으로 사용하고 있던 무선장비들에 대한 각국의 기술 개발 동향을 분석하였으며, 인체 내부와 외부에서의 가장 큰 특성인 인체 전파 특성에 대해서도 분석해 보았다. 그리고 IEEE에서 표준화 작업중인 WBAN(Wireless Body Area Network)의 개념과 추진 상황과 더불어 현재 검토 중인 주파수 대역에 대해서 분석하였다.

A Study on the Sensor Node Based Wireless Network Communication System for Efficient EEG Transmission (효율적인 EEG 전송을 위한 센서노드기반의 무선통신시스템에 관한 연구)

  • Jo, Jun-Mo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.5
    • /
    • pp.791-796
    • /
    • 2013
  • Advent of the brain wave health care system is considered as an important issues in the industrial and research area in these days. It is necessary to detect EEG signals in real-time in order to support the medical emergency service for the epileptic or brain infarct patients. Since the efficient network support is an essential factor for the system, several topologies using sensor node based wireless body area network is suggested and simulated in this paper. Finally the Opnet simulation result is evaluated for the efficient topology of the body area network.