• Title/Summary/Keyword: Wireless Access Networks

Search Result 892, Processing Time 0.027 seconds

Throughput Analysis in Vehicular Wi-Fi Networks (Wi-Fi 기반 차량 네트워크에서의 인터넷 처리율 분석)

  • Kim, Won-Jung;Kim, Young-Hyun;Youn, Joo-Sang;Pack, Sang-Heon
    • The KIPS Transactions:PartC
    • /
    • v.18C no.1
    • /
    • pp.45-50
    • /
    • 2011
  • Due to advances in wireless communications and portable terminals, any-time, any-where, and any-device Internet access is possible. In particular, Internet access in moving vehicles is an emerging and challenging issue. Even though a variety studies have been conduced for vehicular networks, little attention is paid to vehicular Wi-Fi networks where a Wi-Fi access point (AP) is installed at the vehicle and the AP is connected to an external base station (BS). In this paper, we conduct a measurement study on the uplink and downlink throughput for Internet access in vehicular Wi-Fi networks. We consider diverse network environments: high-speed train, car, and subway. Measurement results demonstrate that current Internet access in vehicular Wi-Fi networks are not satisfactory for interactive multimedia applications. Therefore, in-depth study on resource management in vehicular Wi-Fi networks is strongly required.

Network Selection Algorithm Based on Spectral Bandwidth Mapping and an Economic Model in WLAN

  • Pan, Su;Zhou, Weiwei;Gu, Qingqing;Ye, Qiang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.1
    • /
    • pp.68-86
    • /
    • 2015
  • Future wireless network aims to integrate different radio access networks (RANs) to provide a seamless access and service continuity. In this paper, a new resource denotation method is proposed in the WLAN and LTE heterogeneous networks based on a concept of spectral bandwidth mapping. This method simplifies the denotation of system resources and makes it possible to calculate system residual capacity, upon which an economic model-based network selection algorithm is designed in both under-loaded and over-loaded scenarios in the heterogeneous networks. The simulation results show that this algorithm achieves better performance than the utility function-based access selection (UFAS) method proposed in [12] in increasing system capacity and system revenue, achieving load balancing and reducing the new call blocking probability in the heterogeneous networks.

A Real-Time MAC Protocol with Extended Backoff Scheme for Wireless Sensor Networks

  • Teng, Zhang;Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.3
    • /
    • pp.341-346
    • /
    • 2011
  • Wireless sensor networks (WSNs) are formed by a great quantity of sensor nodes, which are consisted of battery-powered and some tiny devices. In WSN, both efficient energy management and Quality of Service (QoS) are important issues for some applications. Real-time services are usually employed to satisfy QoS requirements in critical environment. This paper proposes a real-time MAC (Medium Access Control) protocol with extended backoff scheme for wireless sensor networks. The basic idea of the proposed protocol employs (m,k)-firm constraint scheduling which is to adjust the contention window (CW) around the optimal value for decreasing the dynamic failure and reducing collisions DBP (Distant Based Priority). In the proposed protocol, the scheduling algorithm dynamically assigns uniform transmitting opportunities to each node. Numerical results reveal the effect of the proposed backoff mechanism.

Energy-Conserving MAC Protocol in Ubiquitous Sensor Networks (유비쿼터스 센서 망에서의 에너지 절약형 매체접근 제어 프로토콜)

  • Yang, Hyun-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.1
    • /
    • pp.177-185
    • /
    • 2008
  • Research on media access control (MAC) scheme for Wireless Sensor Network (WSN) has been mainly focused on energy efficiency improvement, while interest on latency is relatively weak. However, end-to-end latency could be a critical limitation specifically in the multi-hop network such as wireless multimedia sensor networks. In this paper we propose a media access control scheme with distributed transmission power control to Improve end-to-end transmission latency as well as reduce power consumption in multi-hop wireless sensor networks. According to the simulation results, the proposed scheme is turned out to be an energy efficient scheme with improved end-to-end transmission latency.

Modeling and Performance Analysis of MAC Protocol for WBAN with Finite Buffer

  • Shu, Minglei;Yuan, Dongfeng;Chen, Changfang;Wang, Yinglong;Zhang, Chongqing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.11
    • /
    • pp.4436-4452
    • /
    • 2015
  • The IEEE 802.15.6 standard is introduced to satisfy all the requirements for monitoring systems operating in, on, or around the human body. In this paper, analytical models are developed for evaluating the performance of the IEEE 802.15.6 CSMA/CA-based medium access control protocol for wireless body area networks (WBAN) under unsaturation condition. We employ a three-dimensional Markov chain to model the backoff procedure, and an M/G/1/K queuing system to describe the packet queues in the buffer. The throughput and delay performances of WBAN operating in the beacon mode are analyzed in heterogeneous network comprised of different user priorities. Simulation results are included to demonstrate the accuracy of the proposed analytical model.

Increasing Throughput in Energy-Based Opportunistic Spectrum Access Energy Harvesting Cognitive Radio Networks

  • Yao, Yuanyuan;Yin, Changchuan;Song, Xiaoshi;Beaulieu, Norman C.
    • Journal of Communications and Networks
    • /
    • v.18 no.3
    • /
    • pp.340-350
    • /
    • 2016
  • The performance of large-scale cognitive radio (CR) networks with secondary users sustained by opportunistically harvesting radio-frequency (RF) energy from nearby primary transmissions is investigated. Using an advanced RF energy harvester, a secondary user is assumed to be able to collect ambient primary RF energy as long as it lies inside the harvesting zone of an active primary transmitter (PT). A variable power (VP) transmission mode is proposed, and an energy-based opportunistic spectrum access (OSA) strategy is considered, under which a secondary transmitter (ST) is allowed to transmit only if its harvested energy is larger than a predefined transmission threshold and it is outside the guard zones of all active PTs. The transmission probability of the STs is derived. The outage probabilities and the throughputs of the primary and the secondary networks, respectively, are characterized. Compared with prior work, the throughput can be increased by as much as 29%. The energy-based OSA strategy can be generally applied to a non-CR setup, where distributed power beacons (PBs) are deployed to power coexisting wireless signal transmitters (WSTs) in a wireless powered sensor network.

Integrated Wireless Network Control System using a Cloud-based AP Controller (클라우드 기반의 AP Controller를 이용한 무선 네트워크 통합 관리 시스템)

  • Min, Kyung-Su;Yoon, Kwon-Jin;Park, Min-Ho;Jung, Sou-Hwan
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.4
    • /
    • pp.720-722
    • /
    • 2015
  • In this paper, we propose a new type of integrated wireless control system using a cloud-based AP Controller. With this system, network administrator can control wireless network in head office and branch hierarchically. In head office, they have an AP Controller Manager, it can control all Access Points, Access point Controllers in their networks. In addition, if we need to install new Access point Controller because of the increasing number of Access Point, the process of making virtual Access point Controller can be automated. This paper presents an architecture of the integrated wireless control system, as well as describes its components and protocols.

An adaptive MAC protocol exploiting multiple paths in wireless mesh networks

  • Lee, Hyung-Keun;Yi, Joon-Hwan
    • Journal of IKEEE
    • /
    • v.13 no.1
    • /
    • pp.94-100
    • /
    • 2009
  • In recent years, the wireless mesh network (WMN) has been an emerging technology to provide Internet access to fixed and mobile wireless devices. The main goal of this paper is the design and simulation of a new MAC protocol based on the multi-path routing information for wireless mesh networks. The information about multiple paths discovered in the network layer is exploited by the MAC layer in order to forward a frame over the best hop out of multiple hop choices. The performance of our approach is compared with conventional 802.11 MAC through the simulation. The results show that our scheme exhibits a significantly better performance rather than conventional 802.11 MAC protocol in terms of packet overhead, end-to-end throughput and delay.

  • PDF

A Dynamic Priority-based QoS Control Scheme for Wireless Mobile Networks

  • Kang, Moon-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2005.11a
    • /
    • pp.57-60
    • /
    • 2005
  • In this paper, a dynamic priority-based QoS (DPQoS) provision scheme is proposed for the required QoS from one end of the network to the other in wireless mobile networks. The DPQoS model is used to meet diversity multimedia traffic requirements. This model is come up with a framework for the wireless network of which consists of a core-IP network and also a number of wireless access networks. For the true end-to-end QoS, it is required that the core network is able to support the required QoS for the wireless users. This paper shows a solution to optimize the performance for different traffic classes according to the traffic characteristics. The performance of the proposed scheme is evaluated at delay aspects such as delay and throughput.

  • PDF

Channel Assignment, Link Scheduling, Routing, and Rate Control for Multi-Channel Wireless Mesh Networks with Directional Antennas

  • Roh, Hee-Tae;Lee, Jang-Won
    • Journal of Communications and Networks
    • /
    • v.18 no.6
    • /
    • pp.884-891
    • /
    • 2016
  • The wireless mesh network (WMN) has attracted significant interests as a broadband wireless network to provide ubiquitous wireless access for broadband services. Especially with incorporating multiple orthogonal channels and multiple directional antennas into the WMN, each node can communicate with its neighbor nodes simultaneously without interference between them. However, as we allow more freedom, we need a more sophisticated algorithm to fully utilize it and developing such an algorithm is not easy in general. In this paper, we study a joint channel assignment, link scheduling, routing, and rate control problem for the WMN with multiple orthogonal channels and multiple directional antennas. This problem is inherently hard to solve, since the problem is formulated as a mixed integer nonlinear problem (MINLP). However, despite of its inherent difficulty, we develop an algorithm to solve the problem by using the generalized Benders decomposition approach [2]. The simulation results show the proposed algorithm provides the optimal solution to maximize the network utility, which is defined as the sum of utilities of all sessions.