• Title/Summary/Keyword: Wire-load System

Search Result 182, Processing Time 0.031 seconds

Implementation of a 35KVA Converter Base on the 3-Phase 4-Wire STATCOMs for Medium Voltage Unbalanced Systems

  • Karimi, Mohammad Hadi;Zamani, Hassan;Kanzi, Khalil;Farahani, Qasem Vasheghani
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.877-883
    • /
    • 2013
  • This paper discussed a transformer-less shunt static synchronous compensator (STATCOM) with consideration of the following aspects: fast compensation of the reactive power, harmonic cancelation and reducing the unbalancing of the 3-phase source side currents. The STATCOM control algorithm is based on the theory of instantaneous reactive power (P-Q theory). A self charging technique is proposed to regulate the dc capacitor voltage at a desired level with the use of a PI controller. In order to regulate the DC link voltage, an off-line Genetic Algorithm (GA) is used to tune the coefficients of the PI controller. This algorithm arranged these coefficients while considering the importance of three factors in the DC link voltage response: overshoot, settling time and rising time. For this investigation, the entire system including the STATCOM, network, harmonics and unbalancing load are simulated in MATLAB/SIMULINK. After that, a 35KVA STATCOM laboratory setup test including two parallel converter modules is designed and the control algorithm is executed on a TMS320F2812 controller platform.

Development of a Transport Method to use Continuous Cableway System for Transmission Line Construction Work (송전선로 건설공사 연삭 삭도공법 개발)

  • Baik, Seung-Do;Min, Byeong-Wook;Kim, Sang-Duk;Choi, Jin-Sung;Kim, Do-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.679-681
    • /
    • 2005
  • The materials for transmission line construction were transported by road which opened in mountainous areas until the mid 1990s, However, from the mid 1990s, as social interest in the environment standard increases, a cable way and helicopter transport methods of construction have been applied to minimize damage to the environment and to build an environmental friendly system. The current cable way method is a single cable way system which has a lower section base to load materials into a carriage and carry them to the tower construction site by use of an engine and a main rope. Then the carriage lowers itself via a slope between the tower construction site and the lower section base. The single cable way system has the demerits of site acquisition for the lower section base, forest felling when installing the wire rope, and it is not applicable to a even topology Also it has to be installed separately at each tower site. Accordingly, to carry materials without forest felling and regardless of slope, the chain cable way system was developed to provide materials for more than two towers consecutively by use of an engine carriage and winch.

  • PDF

A Study on the Behavior Characteristics of a Tensioning Device of a Catenary System According to the Longitudinal Dynamic Displacement of Railroad Bridge (철도교량의 종방향 동적 변위에 따른 전차선로 장력조정장치 거동특성에 관한 연구)

  • Na, Youn-Il;Lee, Jae-Bong;Kim, Jae-Moon;Kim, Yang-Su
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.10
    • /
    • pp.1517-1522
    • /
    • 2015
  • Since electric railroad vehicle pass through repeatedly on the railroad bridge, the dynamic load that causes the change of tension of contact wire affect it constantly. In this paper, we measured the dynamic displacement of the railroad bridges to analyze the effect of tension in the catenary. A result of dynamic measurement of the longitudinal displacement, it's maximum value was 39.9mm which was lower than the primary management criteria 378mm. Also on the based of a maximum temperature, it shows a feature that the longitudinal displacement value increased as temperature rise from April to October. In terms of behavior characteristics of a tensioning device, it was confirmed to be the value of 50mm stroke movement when the temperature changes ±5℃.

Experimental Study on Strengthening Effect of Plastic Greenhouse using Tension-tie (인장타이를 이용한 비닐하우스의 보강효과에 관한 실험적 연구)

  • Jang, Yu-Jin;Lee, Swoo-Heon;Chae, Seoung-Hun;Shin, Kyung-Jae
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.2
    • /
    • pp.151-160
    • /
    • 2010
  • The number of cases of collapsed plastic greenhouses in farmlands has increased due to the heavy local snowfall caused by extraordinary atmospheric phenomena. Consequently, the economic losses of farmers have also increased. However the government policy in relation to damage pretension is insufficient and collapse case is repeated every year. The main reason for frame collapse is that the moment capacity of a steel pipe is not sufficient to resist a heavy snowload. In this study, experiments were conducted on the current frame system of a greenhouse with a tension tie. The frame consisted of two sections(${\phi}25.4{\times}1.5$, ${\phi}31.8{\times}1.5$), and its span length was 6.5 m. A temporary tension tie using a steel wire and a fabric rope was connected to the two joints, to which a curved beam and a straight column were connected. The pretension force was applied at the tension tie, and a vertical force simulating snowfall was applied until failure. The fabric rope frame increased the load-carrying capacity by 10-45% compared to the normal frame without a tension tie, and the steel wire frame increased the load-carrying capacity by 58-73% compared to the normal frame without a tension tie. Steel wire was found to be more effective as far as strength is concerned, but its connection details and pretension application are more difficult and complicated than those of the fabric rope. The test results thus show that the fabric rope is more preferable.

Evaluation of Mechanical Joint Structural Performance through Actual Performance Testing of PC Connections (PC 접합부의 실물 성능실험을 통한 기계식이음 구조성능 평가)

  • Kim, Jae Young;Kim, Yong Nam;Seo, Min Jung;Kim, Beom Jin;Kim, Sung Jig;Lee, Kihak
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.129-139
    • /
    • 2024
  • In this study, the SBC system, a new mechanical joint method, was developed to improve the constructability of precast concrete (PC) beam-column connections. The reliability of the finite element analysis model was verified through the comparison of experimental results and FEM analysis results. Recently, the intermediate moment frame, a seismic force resistance system, has served as a ramen structure that resists seismic force through beams and columns and has few load-bearing walls, so it is increasingly being applied to PC warehouses and PC factories with high loads and long spans. However, looking at the existing PC beam-column anchorage details, the wire, strand, and lower main bar are overlapped with the anchorage rebar at the end, so they do not satisfy the joint and anchorage requirements for reinforcing bars (KDS 41 17 00 9.3). Therefore, a mechanical joint method (SBC) was developed to meet the relevant standards and improve constructability. Tensile and bending experiments were conducted to examine structural performance, and a finite element analysis model was created. The load-displacement curve and failure pattern confirmed that both the experimental and analysis results were similar, and it was verified that a reliable finite element analysis model was built. In addition, bending tests showed that the larger the thickness of the bolt joint surface of the SBC, the better its structural performance. It was also determined that the system could improve energy dissipation ability and ductility through buckling and yielding occurring in the SBC.

Simplified Control Scheme of Unified Power Quality Conditioner based on Three-phase Three-level (NPC) inverter to Mitigate Current Source Harmonics and Compensate All Voltage Disturbances

  • Salim, Chennai;Toufik, Benchouia Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.544-558
    • /
    • 2013
  • This paper proposes a simplified and efficient control scheme for Unified Power Quality Conditioner (UPQC) based on three-level (NPC) inverter capable to mitigate source current harmonics and compensate all voltage disturbances perturbations such us, voltage sags, swells, unbalances and harmonics. The UPQC is designed by the integration of series and shunt active filters (AFs) sharing a common dc bus capacitor. The dc voltage is maintained constant using proportional integral voltage controller. The shunt and series AF are designed using a three-phase three-level (NPC) inverter. The synchronous reference frame (SRF) theory is used to get the reference signals for shunt and the power reactive theory (PQ) for a series APFs. The reference signals for the shunt and series APF are derived from the control algorithm and sensed signals are injected in tow controllers to generate switching signals for series and shunt APFs. The performance of proposed UPQC system is evaluated in terms of power factor correction and mitigation of voltage, current harmonics and all voltage disturbances compensation in three-phase, three-wire power system using MATLAB-Simulink software and SimPowerSystem Toolbox. The simulation results demonstrate that the proposed UPQC system can improve the power quality at the common connection point of the non-linear load.

Allowable Limits for Voltage Unbalance Factor of Three Phase Four Wire Load System (3상 4선식 부하설비의 전압 불평형율 허용 기준)

  • Kim, Jong-Gyeum;Park, Young-Jin;Jeong, Jong-Ho;Lee, Eun-Woong
    • Proceedings of the KIEE Conference
    • /
    • 2006.05a
    • /
    • pp.51-56
    • /
    • 2006
  • 저압 수용가에 적용되고 있는 3상 4선식 배전방식은 단상 및 3상 부하를 동시에 이용할 수 있는 장점이 있는 반면 부하의 불평형 운전에 의한 임피던스의 변화로 전압 불평형이 발생하게 된다. 이들 부하 중에서는 선형 및 비선형 부하가 사용될 경우 고조파의 발생으로 부하에 나쁜 영향을 미칠 수 있다. 그래서 본 논문에서는 전압 불평형율의 허용범위를 제한하기 위해 전압 불평형율에 대한 측정방법, 불평형율의 계산방법 그리고 현장 측정 등을 통해 도출된 결과들을 분석하여 가장 효과적인 허용범위를 제안하였다.

  • PDF

Automatic Control System for the Stringing Transmission Wire by the Measured Tension (장력측정에 의한 송전선 가설 시스템의 자동화)

  • Bae, Jong-Woo;Hong, Soon-Ill;Jung, Seoung-Hwan;Kim, Sil-Keun;Lee, Sang-Moo;Hong, Jeng-Pyo
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.440-441
    • /
    • 2008
  • 본 논문은 현수형 송전 케이블과 장력발생 교류 서보전동기의 모델을 나타내고 송전케이블의 이도를 일정히 유지하기 위한 장력을 계산하는 알고리즘을 나타내었다. 현수형 송전선 특성에 기초하여 로드셀을 이용한 장력측정에 의해 송전선 가설 시스템의 구성법이 제안되었다. 가설시스템은 장력 발생장치에 교류서보 전동기를 이용하고 케이블의 장력계측 장치는 하중변환기(load cell)를 사용한다.

  • PDF

Pre-strain Effect on the Bauschinger Phenomenon of Non-Heat Treatable Cold Forging Steel (냉간 비조질강의 바우싱거 효과에 미치는 변형량의 영향)

  • Ha J. G.;Kwon Y. N.;Kim S. W.;Lee Y. S.;Lee J. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.10a
    • /
    • pp.326-329
    • /
    • 2005
  • Since the required strength of forged part is achieved by work hardening with the accumulation of plastic strain during the cold working, severe load can be exerted on die system. So, dies are liable to the early fracture for the non-heat treated steel forging in comparison with the conventional mild steels. Therefore, it is necessary to lower the flow stress of steels as much as possible during forging steps. Bauschinger effect can be utilized to lower flow stress during forging steps by giving the tensile prestrain on the forging billet during wire drawing step. In the present study, the prestrain effect on Bauschinger phenomenon is studied to avoid difficulties with application of non-heat treated cold forging steels in practice.

  • PDF

Effect of Vibration on Twisted String Actuation Inside Conduit at High Curvature Angles (높은 곡률 각을 가지는 도관 내부의 줄 꼬임 구동에 대한 진동 효과)

  • Lee, Donghyee;Gaponov, Igor;Ryu, Jee-Hwan
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.3
    • /
    • pp.221-227
    • /
    • 2019
  • This paper studies an effect of vibration on twisted string actuation inside conduit at high curvature angles. In our previous work. we have mentioned that twisted string actuators can be used to transmit power even at significant curvature angles of the conduit. However, several undesirable effects, namely pull-back, hysteresis, and chattering, were present during actuation due to friction between strings and the internal sheath of the conduit. This paper reports the results of experimental study on effects of vibration on twisted string actuation inside curved conduits. We have demonstrated that applying vibration generated near natural frequency of the system during the stages of twisting and untwisting cycles helped reduce pull-back and hysteresis and increase string contraction. In case when sheath was deflected by $180^{\circ}$ under a constant load of 3 kg, we were able to achieve over 40% decrease in pull-back and 30% decrease in hysteresis, compared with no vibration case.