• Title/Summary/Keyword: Wire stiffness

Search Result 93, Processing Time 0.026 seconds

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 구조성능평가)

  • Moon, Hong Bi;Lee, Jeong In;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.1
    • /
    • pp.41-49
    • /
    • 2022
  • In the case of columns in buildings with soft story, the concentration of stress due to the difference in stiffness can damage the columns. The irregularity of buildings including soft story requires retrofit because combined load of compression, bending, shear, and torsion acts on the structure. Concrete jacketing is advantageous in securing the strength and stiffness of existing members. However, the brittleness of concrete make it difficult to secure ductility to resist the large deformation, and the complicated construction process for integrity between the existing member and extended section reduces the constructability. In this study, two types of Steel Grid Reinforcement (SGR), which are Steel Wire Mesh (SWM) for integrity and Steel Fiber Non-Shrinkage Mortar (SFNM) for crack resistance are proposed. One reinforced concrete (RC) column with non-seismic details and two columns retrofitted with each different types of proposed method were manufactured. Seismic performance was analyzed for cyclic loading test in which a combined load of compression, bending, shear, and torsion was applied. As a result of the experiment, specimens retrofitted with proposed concrete jacketing method showed 862% of maximum load, 188% of maximum displacement and 1,324% of stiffness compared to non-retrofitted specimen.

Adaptive length SMA pendulum smart tuned mass damper performance in the presence of real time primary system stiffness change

  • Contreras, Michael T.;Pasala, Dharma Theja Reddy;Nagarajaiah, Satish
    • Smart Structures and Systems
    • /
    • v.13 no.2
    • /
    • pp.219-233
    • /
    • 2014
  • In a companion paper, Pasala and Nagarajaiah analytically and experimentally validate the Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) on a primary structure (2 story steel structure) whose frequencies are time invariant (Pasala and Nagarajaiah 2012). In this paper, the ALP-STMD effectiveness on a primary structure whose frequencies are time varying is studied experimentally. This study experimentally validates the ability of an ALP-STMD to adequately control a structural system in the presence of real time changes in primary stiffness that are detected by a real time observer based system identification. The experiments implement the newly developed Adaptive Length Pendulum Smart Tuned Mass Damper (ALP-STMD) which was first introduced and developed by Nagarajaiah (2009), Nagarajaiah and Pasala (2010) and Nagarajaiah et al. (2010). The ALP-STMD employs a mass pendulum of variable length which can be tuned in real time to the parameters of the system using sensor feedback. The tuning action is made possible by applying a current to a shape memory alloy wire changing the effective length that supports the damper mass assembly in real time. Once a stiffness change in the structural system is detected by an open loop observer, the ALP-STMD is re-tuned to the modified system parameters which successfully reduce the response of the primary system. Significant performance improvement is illustrated for the stiffness modified system, which undergoes the re-tuning adaptation, when compared to the stiffness modified system without adaptive re-tuning.

Parametric study of a new tuned mass damper with pre-strained SMA helical springs for vibration reduction

  • Hongwang Lv;Bin Huang
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.89-100
    • /
    • 2023
  • This paper conducts a parametric study of a new tuned mass damper with pre-strained superelastic SMA helical springs (SMAS-TMD) on the vibration reduction effect. First, a force-displacement relation model of superelastic SMA helical spring is presented based on the multilinear constitutive model of SMA material, and the tension tests of the six SMA springs fabricated are implemented to validate the mechanical model. Then, a dynamic model of a single floor steel frame with the SMAS-TMD damper is set up to simulate the seismic responses of the frame, which are testified by the shaking table tests. The wire diameter, initial coil diameter, number of coils and pre-strain length of SMA springs are extracted to investigate their influences on the seismic response reduction of the frame. The numerical and experimental results show that, under different earthquakes, when the wire diameter, initial coil diameter and number of coils are set to the appropriate values so that the initial elastic stiffness of the SMA spring is between 0.37 and 0.58 times of classic TMD stiffness, the maximum reduction ratios of the proposed damper can reach 40% as the mass ratio is 2.34%. Meanwhile, when the pre-strain length of SMA spring is in a suitable range, the SMAS-TMD damper can also achieve very good vibration reduction performance. The vibration reduction performance of the SMAS-TMD damper is generally equal to or better than that of the classic optimal TMD, and the proposed damper effectively suppresses the detuning phenomena that often occurs in the classic TMD.

Comparison of mechanical properties of nickel-titanium rotary files: Aurum Blue vs. Aurum Pro (니켈티타늄 전동 파일의 기계적 특성 비교: Aurum Blue vs. Aurum Pro)

  • Kwak, Sang Won;Ha, Jung-Hong;Ahn, Sang Mi;Kim, Hyeon-Cheol
    • The Journal of the Korean dental association
    • /
    • v.57 no.11
    • /
    • pp.672-678
    • /
    • 2019
  • AIM: The purpose of this study was to evaluate and compare the torsional fracture resistances, cyclic fatigue resistance, and bending stiffness of two nickel-titanium (NiTi) rotary instruments made of different heat-treated alloy: Aurum Blue (heat-treated) and Aurum Pro (conventional). Methods: Forty-five Aurum Blue and Aurum Pro NiTi files were selected for the three mechanical tests (n=15). For the torsional resistance test, 3 mm file tip was fixed and the shaft was driven clockwise at 2 rpm until fracture occurred by using a customized device. Cyclic fatigue resistance was evaluated by rotating instruments in artificial canal with dynamic mode. Bending stiffness was tested by observation of the bending moment on attaining a 45° bend. The results were analyzed by student-t tests at a significance level of 95%. The fractured surface of each groups were examined under a scanning electron microscope (SEM). Results: Aurum Blue showed significantly higher toughness, ultimate strength, distortion angle, and number of cycles to failure than those of Aurum Pro (p < 0.05). However, Aurum Blue and Aurum Pro did not differ significantly in terms of bending stiffness. SEM showed typical topographic appearances of the cyclic fatigue and torsional fracture. Conclusions: Under the limitations of this study, heat-treated instruments showed higher flexibility and fracture resistances than conventional NiTi instruments.

  • PDF

A Propose of Design Parameters for the Max. Speed of 250 km/h of Overhead Rigid Conductor System (250 km/h급 강체전차선로 설계파라미터 제시)

  • Lee, Kiwon;Cho, Yong Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.4
    • /
    • pp.740-744
    • /
    • 2017
  • Overhead Line is divided by two systems which are OCS (Overhead Catenary Line) and R-Bar (Overhead Rigid Conductor system). R-Bar has an advantage of maintenance and economic aspect comparing with OCS. R-Bar in Korea has developed for the max. speed of 120km/h, but it is evaluated up to the max. speed of 250 km/h in Europe. There are lots of mountains and underground sections in korea, it is really necessary to develop the R-Bar for a high-speed line. In the study, design parameters for the max. speed of 250 km/h of R-Bar was proposed. A bracket space, stiffness, and especially an installation tolerance of contact wire height at a bracket were considered as a parameter, and a dynamic behavior between a contact wire and pantograph was predicted by evaluated FEM simulation tool. The installation tolerance and bracket space are more important for the high-speed system. The proposed parameters was decided very conservative. Because the aerodynamic characteristics of a pantograph in tunnel is more severe than an open route and the simulation tool is not considered the such kind of aerodynamic characteristics.

Diagonal bracing of steel frames with multi-cable arrangements

  • Husem, Metin;Demir, Serhat;Park, Hong G.;Cosgun, Suleyman I.
    • Structural Engineering and Mechanics
    • /
    • v.59 no.6
    • /
    • pp.1121-1137
    • /
    • 2016
  • A large number of structure in the world were build with poor seismic details, with or without any lateral load resisting system like concentrically braced frames and steel plate shear walls. These structures can reveal deteriorating hysteretic behaviors with stiffness and strength degradation. Therefore, seismic retrofitting of such structures for drift control has vital importance. In this study a retrofit methodology has been developed, which involves diagonal bracing of steel frames with different cable arrangements. In the experimental and numerical program 5 different lateral load resisting system were tested and results compared with each other. The results indicated that multi-cable arrangements suggested in this study showed stable ductile behavior without any sudden decrease in strength. Due to the usage of more than one diagonal cable, fracture of any cable did not significantly affect the overall strength and deformation capacity of the system. In cable braced systems damages concentrated in the boundary zones of the cables and beams. That is why boundary zone must have enough stiffness and strength to resist tension field action of cables.

Compressive and Bending Behavior of Sandwich Panels with Octet Truss Core Fabricated from Wires (와이어를 이용하여 제작된 옥데트 트러스 샌드위치 판재의 압축 및 굽힘 거동)

  • Lim Ji-Hyun;Nah Seong-Jun;Koo Man-Hoe;Kang Ki-Ju
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.29 no.3 s.234
    • /
    • pp.470-476
    • /
    • 2005
  • Ultra light metal structures have been studied for several years because of their superior specific stiffness, strength and potential of multi functions. Many studies have been focused on how to manufacture ultra light metal structures and optimize them. In this study, we introduced a new idea to make sandwich panels having octet truss cores. Wires bent in a shape of triangular wave were assembled to construct an Octet truss core and it was bonded with two face sheets to be a sandwich panel. The bending & compressive strength and stiffness were estimated through elementary mechanics for the sandwich specimens with two kinds of face sheets and the results were compared with the ones measured by experiments. Some aspects of assembling and mechanical behavior were discussed compared with Kagome core fabricated from wire, which had been introduced in the authors' previous work.

Fabrication of Tungsten Probe Tips for AFM using Electrochemical Etching (전기화학적 에칭법을 이용한 AFM용 텅스텐 탐침 제작에 관한 연구)

  • Han, Gue-Bum;Jang, Hyuna;Ahn, Hyo-Sok
    • Tribology and Lubricants
    • /
    • v.29 no.4
    • /
    • pp.213-217
    • /
    • 2013
  • As commercial atomic force microscopy (AFM) probes made of Si and $Si_3N_4$ have low stiffness, it is difficult to induce sufficient elastic deformation on the surface of a specimen in a tapping mode. Therefore, high-guality phase contrast images can not obtained. On the other hand, a tungsten AFM probe has relatively higher stiffness than a commercial AFM probe. Accordingly, it is expected to provide an enhanced phase contrast image, which is an effective tool for achieving a better understanding of the micromechanical properties of worn surfaces and wear mechanisms. In this study, on electrochemical etching method was optimized to fabricate tungsten probe tips for an AFM. Electrochemical etching was performed by applying pulse waves with a 20% duty cycle at various voltages instead of only a DC voltage, which has been commonly used.

Vibration and Damping Characteristic of Composite Laminates Embedding Directional Damping Materials (방향성 있는 감쇠재료가 삽입된 복합적층판의 진동 및 감쇠특성)

  • 김성준
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.39-44
    • /
    • 2003
  • Embedding viscoelastic-damping materials into composites can greatly increase the damping properties of composite structures. Usually viscoelastic-damping materials behave isotropically so that their damping properties are the same in all directions. In these days, there is a desire to develop viscoelastic-damping materials that behave orthotropically so that damping properties vary with material orientation. These orthotropic damping materials can be made by embedding rows of thin wires within the viscoelastic materials. These wires add significant directional stiffness to the damping materials. where the stiffness variation with wire orientation follows classical lamination theory. In this paper, the loss factor of composite laminate was evaluated based on Ni and Adams' theory. To investigate the effect of directional damping material, the low-velociy impact response analysis was also performed. The present analysis results show that directional damping material has a great influence on vibration and damping characteristic of composite laminate.

Compression Behavior and Damage Evaluation for Automotive Suspension Fiber-Reinforced Composite Coil Springs (자동차용 서스펜션 섬유강화 복합재 코일 스프링의 압축특성 및 손상평가)

  • Jae-ki, Kwon;Jung-il, Jeon;Jung-kyu, Shin
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.439-446
    • /
    • 2022
  • In this study, fiber-reinforced composite coil springs for automobiles were manufactured using the braiding method, and mechanical tests and damage evaluation were performed to confirm their safety. Through the analysis of the load-displacement behavior, the stiffness of the springs was evaluated to meet the specifications. In addition, the distribution of voids and the impregnation rate on the spring wire section were analyzed to clearly understand the criteria for the mechanical properties of the composite material. Moreover, the tested springs were visually inspected to confirm the damaged parts, and the failure mode was analyzed by observing crack initiation and propagation behavior of cross-sectional samples taken from the crack and failure adjacent areas of springs using SEM.