• 제목/요약/키워드: Wire Spacer

검색결과 14건 처리시간 0.025초

Flow and Convective Heat Transfer Analysis Using RANS for A Wire-Wrapped Fuel Assembly

  • Ahmad, Imteyaz;Kim, Kwang-Yong
    • Journal of Mechanical Science and Technology
    • /
    • 제20권9호
    • /
    • pp.1514-1524
    • /
    • 2006
  • This work presents the three-dimensional analysis of flow and heat transfer performed for a wire-wrapped fuel assembly of liquid metal reactor using Reynolds-averaged Wavier-Stokes analysis in conjunction with 557 model as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary conditions at inlet and outlet of the calculation domain. Three different assemblies, two 7-pin wire-spacer fuel assemblies and one bare rod bundle, apart from the pressure drop calculations for a 19-pin case, have been analyzed. Individual as well as a comparative analysis of the flow field and heat transfer have been discussed. Also, discussed is the position of hot spots observed in the wire-spacer fuel assembly. The flow field in the subchannels of a bare rod bundle and a wire-spacer fuel assembly is found to be different. A directional temperature gradient is found to exist in the subchannels of a wire-spacer fuel assembly Local Nusselt number in the subchannels of wire-spacer fuel assemblies is found to vary according to the wire-wrap position while in case of bare rod bundle, it's found to be constant.

Thermal-Hydraulic Analysis of A Wire-Spacer Fuel Assembly

  • ;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2004년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.473-478
    • /
    • 2004
  • This work presents the Thermal Hydraulic analysis has been performed for a 19-pin wire-spacer fuel assembly using three-dimensional Reynolds-averaged Navier-Stokes equations. SST model is used as a turbulence closure. The whole fuel assembly has been analyzed for one period of the wire-spacer using periodic boundary condition at inlet and outlet of the calculation domain. The overall results far a preliminary calculation show a good agreement with the experimental observations. It has been found that the major unidirectional flows are the axial velocity in sub-channels and the peripheral sweeping flows and the velocities are found to be following a cyclic path of period equal to the wire-wrap pitch. The temperature is found to be maximum in the central region and also, there exist a radial temperature gradient between the fuel rods. The major advantage of performing this kind of analysis is the prediction of thermal-hydraulic behavior of a fuel assembly with much ease.

  • PDF

THREE-DIMENSIONAL FLOW PHENOMENA IN A WIRE-WRAPPED 37-PIN FUEL BUNDLE FOR SFR

  • JEONG, JAE-HO;YOO, JIN;LEE, KWI-LIM;HA, KWI-SEOK
    • Nuclear Engineering and Technology
    • /
    • 제47권5호
    • /
    • pp.523-533
    • /
    • 2015
  • Three-dimensional flow phenomena in a wire-wrapped 37-pin fuel assembly mock-up of a Japanese loop-type sodium-cooled fast reactor, Monju, were investigated with a numerical analysis using a general-purpose commercial computational fluid dynamics code, CFX. Complicated and vortical flow phenomena in the wire-wrapped 37-pin fuel assembly were captured by a Reynolds-averaged Navier-Stokes flow simulation using a shear stress transport turbulence model. The main purpose of the current study is to understand the three-dimensional complex flow phenomena in a wire-wrapped fuel assembly to support the license issue for the core design. Computational fluid dynamics results show good agreement with friction factor correlation models. The secondary flow in the corner and edge subchannels is much stronger than that in an interior subchannel. The axial velocity averaged in the corner and edge subchannels is higher than that averaged in the interior subchannels. Three-dimensional multiscale vortex structures start to be formed by an interaction between secondary flows around each wire-wrapped pin. Behavior of the large-scale vortex structures in the corner and edge subchannels is closely related to the relative position between the hexagonal duct wall and the helically wrapped wire spacer. The small-scale vortex is axially developed in the interior subchannels. Furthermore, a driving force on each wire spacer surface is closely related to the relative position between the hexagonal duct wall and the wire spacer.

6도체 무볼트형 스페이서 댐퍼의 중량변화에 따른 진동현상 (Vibration Phenomenon with Weight Change of 6 Bundle Boltless Spacer Damper)

  • 김영달
    • 한국소음진동공학회논문집
    • /
    • 제13권9호
    • /
    • pp.671-678
    • /
    • 2003
  • Spacer dampers maintain the constant gaps between each conductor in a bundle conductor-transmission line, and are installed at proper intervals to keep a line from all sorts of damages derived from the vibration energy caused by mechanical or electrical external factors. It is most important to embody a technology which considers difficulties of maintenance and repair, and has optimum elements in order to prevent accidents such as destruction by fire or the snapping of a wire by the effect of vibration phenomenon coming from transmission line. In the present thesis, therefore, the analysis of vibratory characteristics of spacer damper is set up by analytical methods such as the analysis of conductor motion's governing equation, the equation of spacer damper's motion, spacer damper-fastened wire's motion in a span, and the numerical analysis of finite difference method. Furthermore, the installation distance between spacer dampers was scrutinized by simulations of various vibration phenomena which change at any time as actual conditions do, and hereafter we will be able to analyze all kinds of vibration phenomena coming from a boltless spacer damper with 6 bundle conductor for 765 k V transmission line based on new analytical methods.

6도체 무볼트형 Spacer Damper의 진동현상에 관한 연구 (A Study on the Vibration Phenomenon of 6 Bundle Boltless Spacer Damper)

  • 김영달
    • 조명전기설비학회논문지
    • /
    • 제17권3호
    • /
    • pp.110-118
    • /
    • 2003
  • Sparer damper는 다도체 송전선로에서 각 소도체 간의 간격을 유지시켜 주며, 전기적 및 기계적인 외부 요인들에 의해 발생되어진 진동에너지로부터 파생되어지는 각종 피해로부터 전선을 보호하기 위해 적절한 간격을 두고 설치된다. 송전선로에서 발생되어진 진동현상의 결과에 의해 전선의 소손 또는 단선 등의 사고를 방지 및 유지 보수시 어려움을 충분히 감안하여 최적의 요소기술을 구현하는 것이 가장 중요하다. 그러므로 본 논문에서는 Spacer damper에 대한 진동특성 해석은 도선 운동의 지배방정식, Spacer damper의 운동방정식, Spacer damper가 체결된 전선의 경간 내 운동, 정적 처짐 해석 및 유한 차분법에 의한 수치해석 등의 해석적인 방법을 이용하여 정립하였다. 또한 실제 상황에 따라 수시로 변화되는 각종 진동현상을 시뮬레이션하여 Spacer damper의 설치 간격을 검토 하였으며, 새로이 얻어진 해석적인 방법을 토대로 향 후 765kV 송전선로용 6도체 무볼트형 Spacer damper의 각종 진동현상을 해석 할 수 있을 것이다.

Optimization of a Wire-Spacer Fuel Assembly of Liquid Metal reactor

  • ;김광용
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2005년도 연구개발 발표회 논문집
    • /
    • pp.240-243
    • /
    • 2005
  • This study deals with the shape optimization of a wire spacer fuel assembly of Liquid Metal Reactors (LMRs). The Response Surface based optimization Method is used as an optimization technique with the Reynolds-averaged Navier-Stokes analysis of fluid flow and heat transfer using Shear Stress Transport (SST) turbulence model as a turbulence closure. Two design variables namely, pitch to fuel rod diameter ratio and lead length to fuel rod diameter ratio are selected. The objective function is defined as a combination of the heat transfer rate and the inverse of friction loss with a weighting factor. Three level full-factorial method is used to determine the training points. In total, nine experiments have been performed numerically and the resulting datas have been analysed for optimization study. Also, a comparison has been made between the optimized surface and the reference one in this study.

  • PDF

신경회로망 기법을 사용한 액체금속원자로 봉다발의 형상최적화 (Shape Optimization of LMR Fuel Assembly Using Radial Basis Neural Network Technique)

  • 라자 와심;김광용
    • 대한기계학회논문집B
    • /
    • 제31권8호
    • /
    • pp.663-671
    • /
    • 2007
  • In this work, shape optimization of a wire-wrapped fuel assembly in a liquid metal reactor has been carried out by combining a three-dimensional Reynolds-averaged Navier-Stokes analysis with the radial basis neural network method, a well known surrogate modeling technique for optimization. Sequential Quadratic Programming is used to search the optimal point from the constructed surrogate. Two geometric design variables are selected for the optimization and design space is sampled using Latin Hypercube Sampling. The optimization problem has been defined as a maximization of the objective function, which is as a linear combination of heat transfer and friction loss related terms with a weighing factor. The objective function value is more sensitive to the ratio of the wire spacer diameter to the fuel rod diameter than to the ratio of the wire wrap pitch to the fuel rod diameter. The optimal values of the design variables are obtained by varying the weighting factor.

345kV 송전선로용 자동클램핑 장치형 스페이서 댐퍼 개발 (A development of the 345kV spacer damper with automatic clamping device for transmission line)

  • 안용호;이동일;김태진;한병성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 춘계학술대회 논문집 전력기술부문
    • /
    • pp.278-282
    • /
    • 2001
  • The purpose of this study is to introduce a new spacer damper for the bundle transmission lines network. It has the special design, the main characteristics and advantage of this new kind of spacer damper. An Existing spacer damper with bolted clamps, although widely used, is a method of connection with certain disadvantage both as regards assembly on the conductor and in the course of time. Even if tightening torque is correctly applied by using bolt with share head or torque wrench during working time, the aeolian vibration could involve untightening during life time, so the cable can move into the Jaws and wire's breakage appear. To salve this problems, France, Japan and other countries had developed a spacer damper with an automatic system through many years. This new spacer damper is an original automatic clamping device (beltless) which does not require special tool for its installation. This device prevents clamp unlocking problems, ensures a simple installation and ensures a reliable-tightening during life time. Therefore, it is necessary to localize this boltless spacer damper with automate clamping device.

  • PDF

항생제 혼합 시멘트 충전물을 이용한 감염된 족무지 지관절의 2단계 치료(1예 보고) (Two Stage Procedure with a Temporary Antibiotic-impregnated Cement Spacer of Infected Hallux Interphalangeal Joint (A Case Report))

  • 채수욱;김영진;송하헌;김종윤
    • 대한족부족관절학회지
    • /
    • 제16권2호
    • /
    • pp.135-139
    • /
    • 2012
  • The interphalangeal joint (IPJ) of the hallux has received little attention compared with the first metatarsophalangeal joint. But, the hallucal IPJ has several disorders such intra-articular fractures, dorsal dislocation, alignment disorder, and inflammatory or degenerative arthritis. Among these disorders septic arthritis of the IPJ of the hallux is rare. We report a case of sepsis of the hallucal IPJ and adjacent underlying osteomyelitis without neuropathic problem and was performed through infected soft tissue and osseous debridement, temporary antibiotic-impregnated cement spacer, and delayed intercalary allogenic fibular bone graft with K-wire fixation.