• Title/Summary/Keyword: Wiping efficiency

Search Result 4, Processing Time 0.021 seconds

Image Analysis: A Novel Technique to Determine the Efficiency of Wiping Cloths

  • Lee Jae-Hyung;Kim Seong-Hun;Oh Kyung-Wha
    • Fibers and Polymers
    • /
    • v.7 no.1
    • /
    • pp.73-78
    • /
    • 2006
  • The ability to absorb liquid and the dust removal performance are important factors for wiping cloths used to remove contaminants. We have developed a method that can determine the contaminant removal performance of wiping cloths. In the gravimetric method, experimental errors are unavoidable because the contaminant plate is much heavier than the contaminant material. However, we used image analysis to reduce the experimental errors, and did not use the heavy contaminant plate. The correlation coefficient between the image. analysis and the gravimetric methods was very high, at R=0.97, with a significance level of 95%. From the correlation analysis and empirical data, the image analysis method is a useful tool for measuring wiping efficiency. The wiping efficiency measured using image analysis has a close relationship to the wiping speed, viscosity of the contaminant, and wiping pressure, at the significance level of 95%.

The Haptic Display Model Development with the Karnopp Friction Model and the Proxy Concept (카르노프 마찰모델과 탐촉구 개념을 이용한 햅틱 디스플레이 모델 개발)

  • Kwon, Hyo-Jo;Kim, Ki-Ho;Oh, Chae-Youn
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1344-1351
    • /
    • 2004
  • This study develops a haptic display model which is an indispensable for the force generation in the virtual environment. In developing the haptic display model, a Proxy concept and a Karnopp friction model are utilized to generate the reaction force and the friction force. Also this study develops a 2 D.O.F. remote wiping system. This system is composed of a 2 D.O.F. master manipulator, a force sensor equipped 2 D.O.F. slave manipulator and a real time controller. With the developed remote wiping system, this study identifies the friction characteristic of the aluminum, acryl and rubber plate. The results are used as the dynamic friction coefficient of the haptic display model. This study shows the efficiency of the developed haptic display model by the comparison between the friction characteristic of the haptic display with the developed haptic display model and the friction characteristic of the real aluminum, acryl and rubber plate.

Novel Recycling Technology of Ultra-fine Fibrous Materials

  • Kim, Seong-Hun;Oh, Kyung-Wha;Lee, Shin-Kyung
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.209-209
    • /
    • 2006
  • Ultra-fine fibers are spun by expensive fiber spinning technology using special spinnerets. Ultra-fine fibrous materials have attracted considerable attentions because of their potential applications as high performance wiping cloths, water absorbent sound proofing materials and moisture transfer sporting good. However, production expense of ultra-fine fibers is 5 to 7 times higher than general textile materials. The objective of this research is to develop cost-effective recycling process to produce multi-functional ultra-fine fibrous material in terms of the development of garnetting and carding machines for ultra-fine fibrous material waste and scrap. The efficiency of sound absorption for the recycled polyester nonwoven increased with decreasing length and thickness of component fibers, which was attributed to the reduction of air permeability. It is expected that high value and cost-effective textile products are developed using ultra-fine fibrous wastes and that sound proofing material and oil absorbent f

  • PDF

Preparation of superhydrophilic coating solutions containing fluorosurfactants and characterization of their antifogging and antifouling properties (불소계면활성제를 함유한 초친수 코팅액의 제조 및 방담 방오 특성)

  • Lee, Soo;Im, Sun Moon;Hwang, Heon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.34 no.3
    • /
    • pp.525-535
    • /
    • 2017
  • In order to produce hydrophilic coating solution, which has superior antifogging and antifouling effect on the glass surface of solar cell module as well as improving photovoltaic efficiency, nanosilica was dispersed in an aqueous solution of Tween 20 and fluorosurfactant composed of decafluorobutane and polyethylene glycol. The antifogging effect at high temperature was excellent for all the coating solutions containing nanosilica, but the antifouling effect was observed when the content of nanosilica was over 6 wt%. As the content of fluorosurfactant increased, the initial water contact angle slightly increased and the antifogging effect remained well until 500 wiping with wet $Wipeol^{(R)}$. The antifouling effect was also excellent regardless of the content of fluorosurfactant, thus 0.1 wt% of the fluorosurfactant was enough for a coating solution production. From the AFM results, when 0.1 wt% to 0.3 wt% of the fluoro surfactant was added, the fractal structure of the coated glass surface was clearly existed and contributed to the better antifouling effect. The transmittance of coated glass surface was highest in TL-1 coating solution containing 0.1 wt% of fluorosurfactant, and the addition of fluorosurfactant in a larger amount than 0.1 wt% did not improve the transmittance. This result is in good agreement with the previous AFM result which shows a high surface roughness as well as a fractal structure formation for the TL-1 coating solution.