• Title/Summary/Keyword: Winters 승법 모형

Search Result 4, Processing Time 0.018 seconds

A Study on Demand Forecasting Change of Korea's Imported Wine Market after COVID-19 Pandemic (코로나 팬데믹 이후 국내 수입와인 시장의 수요예측 변화 연구)

  • Jihyung Kim
    • The Journal of Bigdata
    • /
    • v.8 no.2
    • /
    • pp.189-200
    • /
    • 2023
  • At the beginning of the COVID-19 pandemic, Korea's wine market had shrunk as other countries. However, right after the pandemic, Korea's imported wine consumption had been increased 69.6%. Because of the ban on overseas travel, wine was consumed in the domestic market. And consumption of high-end wines were increased significantly due to revenge spending and home drinking. However, from 2022 Korea's wine market has begun to shrink sharply again. Therefore this study forecasts the size of imported wine market by 2032 to provide useful information to wine related business entities. KITA(Korea International Trade Association)'s 95 time-series data per quarter from Q1 of 2001 to Q3 of 2023 was utilized in this research. The accuracy of model was tested based on value of MAPE. And ARIMA model was chosen to forecast the size of market value and Winter's multiplicative model was used for the size of market volume. The result of ARIMA model for the value (MAPE=10.56%) shows that the size of market value in 2032 will be increased up to USD $1,023,619, CAGR=6.22% which is 101% bigger than its size of 2023. On the other hand, the volume of imported wine market (MAPE=10.56%) will be increased up to 64,691,329 tons, CAGR=-0.61% which is only 15.12% bigger than its size of 2023. The result implies that the value of Korea's wine market will continue to grow despite the recent decline. And the high-end wine market will account for most of the increase.

Prediction of Electricity Sales by Time Series Modelling (시계열모형에 의한 전력판매량 예측)

  • Son, Young Sook
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.3
    • /
    • pp.419-430
    • /
    • 2014
  • An accurate prediction of electricity supply and demand is important for daily life, industrial activities, and national management. In this paper electricity sales is predicted by time series modelling. Real data analysis shows the transfer function model with cooling and heating days as an input time series and a pulse function as an intervention variable outperforms other time series models for the root mean square error and the mean absolute percentage error.

Time Series Model을 이용한 주요항만 해상교통량 예측

  • Yu, Sang-Rok;Jeong, Jung-Sik;Kim, Cheol-Seung;Jeong, Jae-Yong
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.133-135
    • /
    • 2013
  • 장래의 해상교통량에 대한 정확한 예측은 항로설계 및 해상교통의 안전성 평가 측면에서 중요한 요소이다. 본 연구는 신뢰성 있는 해상교통량을 추정하기 위해 시계열 모델의 지수평활법과 ARIMA 모형을 이용하여 모형의 식별 및 진단 방안을 제시하였다. 제시된 방법의 효과를 검증하기 위하여 주요항만인 부산항, 광양항, 인천항, 평택항의 해상교통량을 예측하였다. 그 결과로 부산항은 ARIMA 모형, 광양항은 Winters 승법 모형, 인천항은 단순계절 모형, 평택항은 ARIMA 모형이 더 적합한 모형으로 알 수 있었으며, 각 항만별 계절에 따라 월별 교통량의 차이를 보이는 것으로 분석되었다. 본 연구 결과는 향후 항로 및 항만설계 또는 해상교통 안전성 평가에 보다 신뢰성 있는 추정치를 제공할 수 있을 것으로 보인다.

  • PDF

A Case Study on Crime Prediction using Time Series Models (시계열 모형을 이용한 범죄예측 사례연구)

  • Joo, Il-Yeob
    • Korean Security Journal
    • /
    • no.30
    • /
    • pp.139-169
    • /
    • 2012
  • The purpose of this study is to contribute to establishing the scientific policing policies through deriving the time series models that can forecast the occurrence of major crimes such as murder, robbery, burglary, rape, violence and identifying the occurrence of major crimes using the models. In order to achieve this purpose, there were performed the statistical methods such as Generation of Time Series Model(C) for identifying the forecasting models of time series, Generation of Time Series Model(C) and Sequential Chart of Time Series(N) for identifying the accuracy of the forecasting models of time series on the monthly incidence of major crimes from 2002 to 2010 using IBM PASW(SPSS) 19.0. The following is the result of the study. First, murder, robbery, rape, theft and violence crime's forecasting models of time series are Simple Season, Winters Multiplicative, ARIMA(0,1,1)(0,1,1), ARIMA(1,1,0 )(0,1,1) and Simple Season. Second, it is possible to forecast the short-term's occurrence of major crimes such as murder, robbery, burglary, rape, violence using the forecasting models of time series. Based on the result of this study, we have to suggest various forecasting models of time series continuously, and have to concern the long-term forecasting models of time series which is based on the quarterly, yearly incidence of major crimes.

  • PDF