• Title/Summary/Keyword: Winter cover crop

Search Result 34, Processing Time 0.026 seconds

Effect of Winter Mulching on Growth and Fiber Yield of Ramie Plant (동계피복이 모시풀의 생육 및 섬유수량에 미치는 영향)

  • 권병선;김상곤;정동희;임준택
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.38 no.3
    • /
    • pp.208-212
    • /
    • 1993
  • Since ramie suckers distribute soil surface layer within 10cm depth, some of them are dead from low soil temperature in winter. An experiment was conducted to investigate the effects of various mulching methods on safe overwintering of sucker at three or four years old, fully-grown ramie plots. The sprouting dates of ramie was March 28 in transparent vinyl mulching(TPEF), April 1 in transparent vinyl mulching over cover of straw, manure or rice hull at the amount of 500kg /10a (CM), and April 6 in black vinyl mulching(BDEF). These treatments showed earlier sprouting date from 9 to 18 days than the conventional mulching with 1000 kg straw /10a the sprouting date of which was April 15. TPEF treatment showed the earliest but ununiform sprouting. In contrast, sprouts in CM treatment was uniform but emerged somewhat later compared with the treatment of TPEF. The number of stems per unit area increased 50 percent more in TPEF, and 35 to 39 percent more in CM than the treatment of conventional mulching.

  • PDF

Analysis of solar radiation and simulation of thermal environment in plastic greenhouse -Simulation of thermal environment in plastic greenhouse- (플라스틱 온실(温室)의 일사량(日射量) 분석(分析)과 열적(熱的) 환경(環境)의 시뮬레이션에 관(關)한 연구(硏究) -플라스틱 온실(温室)의 열적환경(熱的環境)의 시뮬레이션-)

  • Park, J.B.;Koh, H.K.
    • Journal of Biosystems Engineering
    • /
    • v.12 no.2
    • /
    • pp.16-27
    • /
    • 1987
  • Greenhouse farming was introduced to the Korean farmers in the middle of 1950's and its area has been increased annually. The plastic greenhouse, which is covered with polyethylene or polyvinyl chloride film, has been rapidly spread in greenhouse farming since 1970. The greenhouse farming greatly contributed to the increase of farm household income and the improvement of crop productivity per unit area. Since the greenhouse farming is generally practiced during winter, from November to March, the thermal environment in the plastic greenhouse should be controlled in order to maintain favorable condition for plant growing. Main factors that influence the thermal environment in the plastic greenhouse are solar radiation, convective and radiative heat transfer among the thermal component of the greenhouse, and the use of heat source. The objective of this study was to develop a simulation model for thermal environment of the plastic greenhouse in order to determine the characteristics of heat flow and effects of various ambient environmental conditions upon thermal environments within the plastic greenhouse. The results obtained are summarized as follows: 1. Simulation model for thermal environment of the plastic greenhouse was developed, resulting in a good agreement between the experimental and predicted data. 2. Solar radiation being absorbed in the plant and soil during the daytime was 75 percent of the total solar radiation and the remainder was absorbed in the plastic cover. 3. About 83 percent of the total heat loss was due to convective and radiative heat transfer through the plastic cover. Air ventilation heat loss was 5 to 6 percent of total heat loss during the daytime and 16 to 17 percent during the night. 4. The effectiveness of thermal curtain for the plastic greenhouse at night was significantly increased by the increase of the inside air temperature of the greenhouse due to the supplementary heat. 5. When the temperature difference between the inside and outside of the greenhouse was small, the variation of ambient wind velocity did not greatly affect on the inside air temperature. 6. The more solar radiation in the plastic greenhouse was, the higher the inside air temperature. Because of low heat storage capacity of the plant and soil inside the greenhouse and a relatively high convective heat loss through the plastic cover, the increase of solar radiation during the daytime could not reduce the supplymentary heat requirement for the greenhouse during the night.

  • PDF

Soil Quality Assessment for Environmentally Sound Agriculture in the Mountainous Soils; Analysis of Sediment Data and Suggestion of Best Management Practices (산지에서의 환경보전형 농업을 위한 토양의 질 평가;유사자료의 분석과 최적영농방법의 제안)

  • Choi, Joong-Dae;Park, Ji-Sung;Kim, Jeong-Je;Yang, Jae-E;Jung, Yeong-Sang;Yun, Sei-Young
    • Korean Journal of Environmental Agriculture
    • /
    • v.19 no.3
    • /
    • pp.201-205
    • /
    • 2000
  • Eleven runoff $plots(3{\times}15\;m)$ were built on a sloping field of a high plateau in Kangwon Province, Korea. The plots were treated with different tillage, residue covers and fertilizers, corn and potato were cultivated, and sediment discharge was measured from the plots for 3 years. Agricultural management practices were monitored around the plots to develop adequate best management practices. The least sediment occurred from the plots with no-till and 100% residue cover $(corn,\;0.1{\sim}2.2\;t/ha/year)$ and with contour tillage and vinyl sheet cover plots $(potato,\;0.1{\sim}0.2\;t/ha/year)$. The largest sediment was measured from the plots with up-and-down till and no cover ($11{\sim}33$ and $16{\sim}31\;t/ha/year$ from corn and potato plots, respectively). The type of organic and commercial fertilizers seemed not to affect sediment discharge. Sediment discharge from contour plots were largely dependent on the collapse of ridges due to the flush of water stored in furrows. The sediment discharge from contour corn and potato plots with no residue cover was $10{\sim}27$ and $16{\sim}24\;t/ha/year$, respectively. No-till with residue cover, vinyl cover for tuber crops, construction of furrow dam, frost heave research, furrow and ridge tillage with furrow dam after tuber crop harvest, limited stalk harvest of row crops, use of winter cover crops, and other common best management practices were recommended to minimize the sediment discharge from a high plateau sloping land culture.

  • PDF

Yield Increase and Energy Saving Effect on Plastic Greenhouse Covered with Polyolefin Film (PO필름 피복 온실의 수량 증대 및 에너지 절감 효과)

  • Moon, Jong Pil;Park, Seok Ho;Kim, Jin Gu;Lee, Jae Han;Kang, Youn Koo;Lim, Mi Young;Kim, Hye Min
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.428-439
    • /
    • 2020
  • This study was carried out to investigate the effect of PO film on the increase of crop yield and energy saving through PO and PE film greenhouse application and comparison test. As a experimental greenhouse, two single span greenhouses (1-1 W) and two double span greenhouses (1-2 W) were used. During winter season, PO film (0.15 mm outer layer, 0.10mm inner layer) was used as a covering material of greenhouse in double layers for double-span (B15) and single-span(B21), and PE film used for double-span (B15), and single-span (B23) as a control. The experimental vegetable was tomato(Solanum lycopersicum L.) cultivated in soil and the cultivar of that was 'Happiness'. That was cultivated from December 3, 2019 to April 30, 2020. The temperature at night inside the greenhouse was maintained at 15℃, and the side and roof windows were opened to maintain 23 ~ 24℃ during the day. As a result, this study showed that the yield in single-span greenhouse(B21) covered with a PO film increased 20% and that in double-span greenhouse (B16) increased by 9% compared to the greenhouse covered with a PE film (B23, B15). Fuel consumption of the single-span greenhouse (B21) with the cover of PO film was reduced by 12.4% and that of double-span greenhouse was done by 11.5% compared to that of the PE film greenhouse (B23, B15) without any difference between them in growing state.