• Title/Summary/Keyword: Wings

Search Result 527, Processing Time 0.025 seconds

Hydrodynamic Calculation of Two-stage Weis-Fogh Type Water Turbine (2단 직렬 Weis-Fogh형 수차의 유체역학적 특성계산)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.709-717
    • /
    • 2017
  • In this study, a model of two-stage Weis-Fogh type water turbine model is proposed, the hydrodynamic characteristics of this water turbine model are calculated by the advanced vortex method. The basic conditions and the motion of each wing are the same as that of the single-stage model previously proposed by the same author. The two wings (NACA0010 airfoils) and both channel walls are approximated by source and vortex panels, and free vortices are introduced from the body surfaces. The distance between the front wing axis and the rear wing axis, and the phase difference between the motion of the two wings, which is in phase and out of phase are set as the calculation parameters. For each case, the unsteady flow fields, pressure fields, force coefficients, and efficiency of the two wings are calculated, and the hydrodynamic characteristics of the proposed water turbine model are discussed.

Species Composition of Fish Collected by a Gape Net with Wings in the Coastal Waters of Jindo, Korea (진도 연안 낭장망에 어획된 어류의 종조성)

  • Jeong, Jae Mook;Yoo, Joon-Taek;Kim, Heeyong;Lee, Sun-Kil;Go, Woo-Jin;Kim, YeongHye
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.48 no.5
    • /
    • pp.783-788
    • /
    • 2015
  • Species composition of the fish in the coastal waters of Jindo was determined using monthly sample collection by a gape net with wings in 2014. Of a total of 41 fishes collected, the dominant species were Engraulis japonicus, Thryssa kammalensis, Sardinella zunasi, Leiognathus nuchalis, Amblychaeturichthys hexanema, Neosalanx anderssoni, Acanthogobius flavimanus. The former three species were the migratory species and the other four species were the resident species. These 7 fishes accounted for 99.6% of the total number of individuals collected. Monthly species composition did not show a clear seasonal trend. The peak number of individuals occurred in May, lowest in November. Fish were divided into four groups by the cluster analysis.

Aerodynamic Characteristics of an Insect-type Flapping Wings (곤충 모방 플래핑 날개의 공력 특성)

  • Han, Jong-Seob;Chang, Jo-Won;Choi, Hae-Cheon;Kang, In-Mo;Kim, Sun-Tae
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.311-314
    • /
    • 2007
  • Aerodynamic characteristics of an insect-type flapping wings were carried out to obtain the design parameters of Micro Hovering Air Vehicle. A pair of wing model was scaled up about 200 times and applied two pairs of 4-bar linkage mechanism to mimic the wing motion of a fruit fly(Drosophila). To verify the Weis-Fogh mechanism, a pair of wings revolved on the 'Delayed Rotation'. Lift and drag were measured in conditions of the Reynolds number based on wing tip velocity of about 1,200 and the maximum angle of attack of 40$40^{\circ}$. Inertia forces of a wing model were also measured by using a 99.98% vacuum chamber and subtracted on measured data in air. In the present study, high lift effect of Weis-Fogh mechanism was appeared in the middle of upstroke motion.

  • PDF

STRENGTH OF THE RAMAN SCATTERED HE II EMISSION LINES IN SYMBIOTIC STARS AND PLANETARY NEBULAE

  • LEE HEE-WON
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.55-60
    • /
    • 2003
  • In Lee, Kang & Byun (2001) the discovery of Raman scattered 6545 A feature was reported in symbiotic stars and the planetary nebula M2-9. The broad emission feature around 6545 A is formed as a result of Raman scattering of He II n = 6 $\to$ n = 2 photons by atomic hydrogen. In this paper, we introduce a method to compute the equivalent width of He II $\lambda$ 1025 line and present an optical spectrum of the symbiotic star RR Telescopii as an example for a detailed illustration. In this spectrum, we pay attention to the broad H$\alpha$ wings and the Raman scattered He II 6545 feature. The broad Ha wings are also proposed to be formed through Raman scattering of continuum around Ly$\beta$ by Lee (2000), and therefore we propose that the equivalent width of the He II $\lambda$ 1025 emission line is obtained by a simple comparison of the strengths of the 6545 feature and the broad H$\alpha$ wings. We prepare a template H$\alpha$ wing profile from continuum radiation around Ly$\beta$ with the neutral scattering region that is supposed to be responsible for the formation of Raman scattered He II 6545 feature. Isolation of the 6545 feature that is blended with [N II] $\lambda$ 6548 is made by using the fact that [N II] $\lambda$ 6584 is always 3 times stronger than [N II] $\lambda$ 6548. We also fit the 6545 feature by a Gaussian which has a width 6.4 times that of the He II $\lambda$ 6527 line. A direct comparison of these two features for RR Tel yields the equivalent width $EW_{Hel025} = 2.3{\AA}$ of He II $\lambda$ 1025 line. Even though this far UV emission line is not directly observable due to heavy interstellar extinction, nearby He II lines such as He II $\lambda$ 1085 line may be observed using far UV space instruments, which will verify this calculation and hence the origins of various features occurring in spectra around H$\alpha$.

Aerodynamic Characteristics of Giromill with High Solidity (높은 솔리디티를 갖는 자이로밀의 공기역학적 특성)

  • Lee, Ju-Hee;Yoo, Young-So
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.12
    • /
    • pp.1273-1283
    • /
    • 2011
  • A 3-dimensional unsteady numerical analysis has been performed to evaluate the aerodynamic characteristics of a Giromill. Generally, the structure of a Giromill is simple and therefore easy to develop. In addition, the high solidity of the Gironmill helps improve the self-starting capacity at a low tip speed ratio (TSR). However, contrary to the Darrieus wind turbine which has a TSR of 4-7, a Giromill has a low TSR of 1-3. In this study, the aerodynamic characteristics of the Giromill are investigated using computational fluid dynamics (CFD). Three straight-bladed wings are used, and the solidity of the Giromill is 0.75. In contrast to a Darrieus wind turbine having low solidity, the Giromill shows a sudden decrease in the aerodynamic performance because of the interference between the wings and an increase in the drag on the wings in the downstream direction where wind flow is significantly reduced. Consequently, the aerodynamic performance decreased at a TSR value lower than 2.4.

Analysis of Folding Wing Deployment with Aero and Restraint Effects (공기력 및 구속 효과를 고려한 접힘 날개 전개 성능 분석)

  • Kim, Seung-il
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.533-539
    • /
    • 2015
  • Recently, guided missiles applies folding wings to save space. During wing deployment, aero force acting on wing effects significantly on deployment performance, usually aerodynamic coefficient are calculated by CFD analysis. However, Missile Datcom can calculates estimated aerodynamic coefficient very quickly by assuming wing deployment motions as dihedral angle of wing. If missile has external store, wings may need to be folded on top of each other. In this case, one of wing help or interrupt other wing deployment, locking effect. In this study, both effects were included on wing deployment performance analysis to criteria for wings locked condition and formulated wing deploy performance, and compared with wind tunnel test data. Analysis predicted vulnerable wind direction of wing deployment very well.

A Comparison Study of Wing Leading Edge Skin Models in Small Composite Solar-Powered UAVs (소형 복합재 태양광 무인기 윙 리딩에지스킨 모델 비교 연구)

  • Yang, Yong-Man;Kim, Yong-Ha;Kim, Jong-Hwan;Kim, Young-In;Lee, Soo-Yong
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.5
    • /
    • pp.445-452
    • /
    • 2017
  • The wing leading edge skin in this research is an essential structural factor for improving wings' aeromechanical functions, protecting the interior elements of the wings from external damage including birds, and navigating planes safely. The study compared and reviewed models manufactured for optimal light-weight wings of composite UAVs. It compared and investigated displacement forms of torsion loads through finite element analysis using MSC. Patran/Nastran. By confirming the improvement of light-weighting performance according to lamination type, thickness change and shape through torsion strength tests of each model, the research suggested the optimal light-weight wing leading edge skin for small composite UAVs.

Visualization Study on the Phase Difference of a Dragonfly Type Wing (잠자리 유형 날개의 위상차에 대한 가시화 연구)

  • Kim Hyun Seak;Kim Song Hak;Chang Jo Won
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.4
    • /
    • pp.43-54
    • /
    • 2004
  • A visualization study was carried out to investigate the effects of phase difference qualitatively by examining wake pattern on the phase difference of a dragonfly type wing model. The model was built with scaled-up, flapping wings composed of a paired wing with fore- and hind-wings in tandem that mimick the wing form of a dragonfly. The present study was conducted by using the smoke-wire technique and an electronic device below the tandem wings was mounted to find the exact wing position angles. Uncertainties in wing position angle are about $\pm$$1.0^{\cire}$ and instantaneous wing positional angle varies from $-16.5^{\cire}$ to $+22.8^{\cire}$. The tests were made at phase differences between the fore-wing and hind-wing at $0^{\cire}$, $90^{\cire}$, $180^{\cire}$ and $270^{\cire}$. The results show that Karman vortex structures were produced at phase differences of $90^{\cire}$, $180^{\cire}$ and $270^{\cire}$, but Karman vortex structures were not observed at the phase difference of $0^{\cire}$.