• Title/Summary/Keyword: Wing thermal deformation

Search Result 4, Processing Time 0.022 seconds

Investigation of thermal deformation of wing skin induced by temperature gradient (온도 구배에 의한 날개 외피의 열변형 특성 연구)

  • Kim, Jeong-Beom;Kim, Hong-Il;Kim, Jae-Young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.10
    • /
    • pp.896-901
    • /
    • 2015
  • The skin-frame type structure is designed to investigate the thermal deformation of the wing skin induced by the temperature gradient. In order to effectively simulate the temperature gradient on the wing specimen, a water cooling system is devised on the frame of the specimen. Out of surface skin deformation of the skin-frame type structure made of SUS304 material with respect to the temperature is successfully measured using the digital image correlation (DIC) technique including quantitative evaluation of the measurement uncertainty.

A training of SMA wire for stabilization of two-way behaviors and actuator application (형상기억합금 와이어의 거동 안정화를 위한 트레이닝과 작동기 응용)

  • Kim, Sang-Haun;Yang, Sung-Pil;Cho, Maeng-Hyo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.924-927
    • /
    • 2007
  • In this study, adaptation of two-way shape memory effect of SMA wire to the actuator is examined. Therefore the SMA characteristics which are training, material properties, response time at different thermal cycling rates are tested. During training, permanent deformation is accumulated till a certain number of cycle and then saturated. The amount of two-way strain is unchangeable over all cycle and the slope of strain(or stress)-temperature curve is slower as the increase of applied stress. The rate effect is observed resulted from the thermal distribution which heating profile differs from cooling as thermal cycling time. Using the estimated SMA properties, an experimental test for the simple smart wing is performed.

  • PDF

Experimental Test Numerical Simulation of SMA Characteristics and Device verification (형상기억합금 수치해석을 위한 특성 실험 및 작동기 응용)

  • Kim, Sang-Haun;Choi, Hyun-Ho;Cho, Maeng-Hyo
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2005.11a
    • /
    • pp.145-148
    • /
    • 2005
  • In this study, adaptation of two-way shape memory effect of SMA wire to the actuator is examined . Therefore the SMA characteristics which are training, material properties, response time at different thermal cycling rates are tested. During training, permanent deformation is accumulated till a certain number of cycle and then saturated. The amow1t of two-way strain is unchangeable over all cycle and the slope of strain(or stress)-temperature curve is slower as the increase of applied stress. The rate effect is observed resulted from the thermal distribution which heating profile differs from cooling as thermal cycling time. Using the estimated SMA properties, an experimental test for the simple smart wing is performed.

  • PDF

Effect of Ceramic Ball Inclusion on Densification of Metal Powder Compact (삽입된 세라믹 볼이 금속분말성형체의 치밀화에 미치는 영향)

  • Park, Hwan;Yu, Yo-Han;Kim, Gi-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.29-37
    • /
    • 2000
  • The effect of a ceramic ball inclusion on densification behavior of a metal powder compact was investigated under cold isostatic pressing, pressureless sintering and hot isostatic pressing. To simulate those processes, proper constitutive models were implemented into a finite element program (ABAQUS). Measured density distributions of metal powder compacts were also compared with finite element results and showed the same trend with simulated results. Residual stress distributions were calculated by finite element analysis to study the effect of ceramic ball inclusions with different thermal expansion coefficients. The higher residual stress was observed in a metal powder compact when the difference between thermal expansion coefficients for a ceramic ball and metal powder became larger. Samples produced by Wing showed more uniform density distributions and lower residual stresses compared to those by sintering after cold isostatic pressing. For various sizes of ceramic ball inclusions, densification and deformation of powder compacts were also studied during hot isostatic pressing.