• 제목/요약/키워드: Windward

검색결과 126건 처리시간 0.025초

드론을 활용한 풍향풍속이 적용된 박격포용 극표정법 프로그램 개발 (The Development of Mortar POLAR Program with Windward Wind Speed use Drones)

  • 황휘;김정환
    • 대한임베디드공학회논문지
    • /
    • 제18권4호
    • /
    • pp.185-194
    • /
    • 2023
  • Currently, drones are used in various fields such as transportation, agriculture and military. Especially, drones for military use are developed and utilized in many ways such as reconnaissance and bombing to minimize one's own damages. Nevertheless, they are developed as new weapons of modern types, so it is difficult to use them together with existing weapons. In this study, a drone program for effective bombing of mortar, which is often used in modern warfare, is developed. In mortar, a forward soldier comprehends the location of enemy for its distance and altitude, input them in data computer of launching angle, and applies the result value to cannon to launch. However, the existing method has low accuracy of bombing because observing shall be done within 1km from the target, and measuring accurate direction and velocity of the wind is difficult. Whereas, in the program of this study, the location of target, GPS, direction and velocity of the wind, and altitude are measured through drone. Each digit is used to calculate bombing specification for optimal bombing through the calculating formula of launching angle. In addition, when specifications are input in the program, the calculation is done automatically, so that it can be used in various mortars and shells. With the use of the program in this study, the location of enemy can be comprehended, and bombing specifications can be calculated quickly. It also enables the intensity of the wind to be applied for accurate bombing.

Influence of external structure and internal stacking on wind load characteristics of large-span spherical shell structure

  • Xiaobing Liu;Anjie Chen;Qun Yang;Bin Feng;Xuedong Tian
    • Wind and Structures
    • /
    • 제39권3호
    • /
    • pp.191-205
    • /
    • 2024
  • To investigate the wind load characteristics of a large-span spherical shell structure, a rigid model pressure test was conducted in a wind tunnel laboratory. The study aimed to examine the impact of various external structures and internal stacking forms on the wind loads of a spherical shell structure in a practical engineering project. This project features two adjacent spherical structures, each spanning 130 m and standing 67 m tall. These two structures are connected by trestles and a transfer station. Variations in the shape factor and the integral force coefficient of the structure were compared and analyzed under different test cases. The results indicate that when two structures are arranged in series, with the adjacent structure positioned upstream, the shape factor of the structure is most affected, resulting in a significant reduction effect at the bottom of the windward surface. Compared to the external structure, the impact of various internal stacking forms on the shape factor of the structure is relatively weak. The adjacent structure significantly improves the wind resistance of the main structure. The integral force coefficient of the structure reaches its peak when internal stacking is full and is at its lowest when there is no internal stacking.

Simulated tropical cyclonic winds for low cycle fatigue loading of steel roofing

  • Henderson, David J.;Ginger, John D.;Morrison, Murray J.;Kopp, Gregory A.
    • Wind and Structures
    • /
    • 제12권4호
    • /
    • pp.383-400
    • /
    • 2009
  • Low rise building roofs can be subjected to large fluctuating pressures during a tropical cyclone resulting in fatigue failure of cladding. Following the damage to housing in Tropical Cyclone Tracy in Darwin, Australia, the Darwin Area Building Manual (DABM) cyclic loading test criteria, that loaded the cladding for 10000 cycles oscillating from zero to a permissible stress design pressure, and the Experimental Building Station TR440 test of 10200 load cycles which increased in steps to the permissible stress design pressure, were developed for assessing building elements susceptible to low cycle fatigue failure. Recently the 'Low-High-Low' (L-H-L) cyclic test for metal roofing was introduced into the Building Code of Australia (2007). Following advances in wind tunnel data acquisition and full-scale wind loading simulators, this paper presents a comparison of wind-induced cladding damage, from a "design" cyclone proposed by Jancauskas, et al. (1994), with current test criteria developed by Mahendran (1995). Wind tunnel data were used to generate the external and net pressure time histories on the roof of a low-rise building during the passage of the "design" cyclone. The peak pressures generated at the windward roof corner for a tributary area representative of a cladding fastener are underestimated by the Australian/New Zealand Wind Actions Standard. The "design" cyclone, with increasing and decreasing wind speeds combined with changes in wind direction, generated increasing then decreasing pressures in a manner similar to that specified in the L-H-L test. However, the L-H-L test underestimated the magnitude and number of large load cycles, but overestimated the number of cycles in the mid ranges. Cladding elements subjected to the L-H-L test showed greater fatigue damage than when experiencing a five hour "design" cyclone containing higher peak pressures. It is evident that the increased fatigue damage was due to the L-H-L test having a large number of load cycles cycling from zero load (R=0) in contrast to that produced during the cyclone.

Computational assessment of blockage and wind simulator proximity effects for a new full-scale testing facility

  • Bitsuamlak, Girma T.;Dagnew, Agerneh;Chowdhury, Arindam Gan
    • Wind and Structures
    • /
    • 제13권1호
    • /
    • pp.21-36
    • /
    • 2010
  • A new full scale testing apparatus generically named the Wall of Wind (WoW) has been built by the researchers at the International Hurricane Research Center (IHRC) at Florida International University (FIU). WoW is capable of testing single story building models subjected up to category 3 hurricane wind speeds. Depending on the relative model and WoW wind field sizes, testing may entail blockage issues. In addition, the proximity of the test building to the wind simulator may also affect the aerodynamic data. This study focuses on the Computational Fluid Dynamics (CFD) assessment of the effects on the quality of the aerodynamic data of (i) blockage due to model buildings of various sizes and (ii) wind simulator proximity for various distances between the wind simulator and the test building. The test buildings were assumed to have simple parallelepiped shapes. The computer simulations were performed under both finite WoW wind-field conditions and in an extended Atmospheric Boundary Layer (ABL) wind flow. Mean pressure coefficients for the roof and the windward and leeward walls served as measures of the blockage and wind simulator proximity effects. The study uses the commercial software FLUENT with Reynolds Averaged Navier Stokes equations and a Renormalization Group (RNG) k-${\varepsilon}$ turbulence model. The results indicated that for larger size test specimens (i.e. for cases where the height of test specimen is larger than one third of the wind field height) blockage correction may become necessary. The test specimen should also be placed at a distance greater than twice the height of the test specimen from the fans to reduce proximity effect.

Wind induced internal pressure overshoot in buildings with opening

  • Guha, T.K.;Sharma, R.N.;Richards, P.J.
    • Wind and Structures
    • /
    • 제16권1호
    • /
    • pp.1-23
    • /
    • 2013
  • The wind-induced transient response of internal pressure following the creation of a sudden dominant opening during the occurrence of high external pressure, in low-rise residential and industrial buildings was numerically investigated. The values of the ill-defined parameters namely the flow contraction coefficient, loss coefficient and the effective slug length were calibrated by matching the analytical response with the computational fluid dynamics predictions. The effect of a sudden i.e., "instantaneously created" windward opening in the Texas Technical University (TTU) test building envelope was studied for two different envelope flexibility-leakage combinations namely: (1) a quasi-statically flexible and non-porous envelope and (2) a quasi-statically flexible and porous envelope. The responses forced by creating the openings at different time leads/lags with respect to the occurrence of the peak external pressure showed that for cases where the openings are created in close temporal proximity to the peak pressure, the transient overshoot values of internal pressure could be higher than the peak values of internal pressure in the pre-sequent or subsequent resonant response. In addition, the influence of time taken for opening creation on the level of overshoot was also investigated for the TTU building for the two different envelope characteristics. Non-dimensional overshoot factors are presented for a variety of cavity volume-opening area combinations for (1) buildings with rigid/quasi-statically flexible non-porous envelope, and (2) buildings with rigid/quasi-statically flexible and porous envelope (representing most low rise residential and industrial buildings). While the factors appear slightly on the high side due to conservative assumptions made in the analysis, a careful consideration regarding the implication of the timing and magnitude of such overshoots during strong gusts, in relation to the steady state internal pressure response in cyclonic regions, is warranted.

지형 강제력과 하층제트 변화가 한반도 남동 지역 국지 강수에 미치는 영향 분석 연구 (Impact of Topographic Forcing and Variation of Lower-level Jet on Local Precipitation in Southeast Region of Korean Peninsula)

  • 채다은;김은지;김지선;이순환
    • 한국환경과학회지
    • /
    • 제29권1호
    • /
    • pp.1-13
    • /
    • 2020
  • Recently, a heavy rainfall with high spatial variation occurred frequently in the Korean Peninsula. The meteorological event that occurred in Busan on 3 May 2016 is characterized by heavy rain in a limited area. In order to clarify the reason of large spatial variation associated with mountain height and location of low level jet, several numerical experiments were carried out using the dynamic meteorological Weather Research and Forecasting (WRF) model. In this case study, the raised topography of Mount Geumjeong increased a barrier effect and air uplifting due to topographic forcing on the windward side. As a result, wind speed reduced and precipitation increased. In contrast, on the downwind side, the wind speed was slightly faster and since the total amount of water vapor is limited, the precipitation on the downwind side reduced. Numerical experiments on shifting the location of the lower jet demonstrated that if the lower jet is close to the mountain, its core becomes higher due to the effect of friction. Additionally, the water vapor convergence around the mountain increased and eventually the precipitation also increased in the area near the mountain. Hence, the location information of the lower jet is an important factor for accurately predicting precipitation.

논문 : 옆미끄럼이 있는 삼각 날개 / LEX 형상의 와류와 공력 특성 (Papers : Vortex Flow and Aerodynamic Load Characteristics of the Delta Wing / LEX Configuration in Sideslip)

  • 손명환;이기영;백승욱
    • 한국항공우주학회지
    • /
    • 제30권3호
    • /
    • pp.37-45
    • /
    • 2002
  • 옆미끄럼이 있는 조건에서 LEX를 갖는 $65^{\circ}$ 후퇴각 삼각날개의 와류와 공력 특성을 실험적으로 연구하였다. 자유 유동속도는 40m/sec이고 이 속도와 날개뿌리 시위를 기준으로 한 단위길이당 레이놀즈 수는 $1.76{\times}10^6$이다. 받음각 범위는 $12^{\circ}$ 부터 $28^{\circ}$ 까지 이고, 시험된 옆미끄럼각은 $0^{\circ}$ , $-10^{\circ}$ , $-20^{\circ}$ 이다. 날개의 바람쪽에 있는 LEX 와류는 바람 반대쪽 LEX 와류보다 훨씬 더 강하고 날개면에 더 가깝게 날개 후류영역으로 진입한다. LEX 와류와 날개 와류는 서로 연동하여 집중되고 강한 와류를 형성하거나 날개 하류지역에서 붕괴된다. LEX 와류와 날개 와류의 상호작용으로 인하여 바람쪽 날개면에는 높은 흡입압력이 유지되고, 바람 반대쪽 날개면에는 낮은 흡입압력이 형성된다.

R/C 쌍곡 냉각탑의 극한 거동 (Ultimate Behavior of Reinforced Concrete Hyperbolic Cooling Tower)

  • 민창식;김생빈
    • 대한토목학회논문집
    • /
    • 제12권4호
    • /
    • pp.59-70
    • /
    • 1992
  • 풍하중(風荷重)을 받는 쌍곡 냉각탑의 비탄성(非彈性), 비선형(非線型) 극한(極限) 거동(擧動)을 Cray Y-MP 슈퍼 컴퓨터에 개발(開發)한 유한요소(有限要素)컴퓨터 프로그램으로 연구(研究)하였다. 유한요소 망(mesh)을 각각 잘게 잘라서 3모델을 만들고, 이 모델들을 이용하여 탄성과 비탄성 해석으로 유한요소 망의 수렴관계(mesh convergence)를 연구하였다. 연구결과 유한요소의 크기가 냉각탑의 극한거동을 예측하는데 매우 중요한 역할을 하고있음을 볼 수 있었다. 비록 쌍곡 냉각탑이 풍하중(風荷重)에 대해서 막응력(膜應力)(membrane stress)으로 저항하나, 본 연구(研究) 결과(結果) 휨응력(應力)(bending stress)도 냉각탑의 파괴와 거동(擧動)에 매우 중요한 역할을 하고 있음을 알아 내었다. 해석(解析)한 냉각탑은 형성값(Shape factor)이 1.48에 이르렀고, 이는 냉각탑의 자오선 응력(meridional stress)이 원둘레방향으로 상당히 재분배 되고 있음을 보여주는 것이다. 이러한 재분배에 대한 사실은 배치된 철근의 항복이 바람방향 자오선으로부터 $30^{\circ}C$에 까지 나타난 것으로 더욱더 뚜렷하였다. 현재의 탄성해석을 이용하는 냉각탑 설계(設計) 방법은 안전(安全)측에 있음을 보여 주었으며, 1보다 큰 형상값을 설계시에 활용하기 위해서는 더욱더 많은 연구가 선행되어야 할 것이다.

  • PDF

Computational analysis of pollutant dispersion in urban street canyons with tree planting influenced by building roof shapes

  • Bouarbi, Lakhdar;Abed, Bouabdellah;Bouzit, Mohamed
    • Wind and Structures
    • /
    • 제23권6호
    • /
    • pp.505-521
    • /
    • 2016
  • The objective of this study is to investigate numerically the effect of building roof shaps on wind flow and pollutant dispersion in a street canyon with one row of trees of pore volume, $P_{vol}=96%$. A three-dimensional computational fluid dynamics (CFD) model is used to evaluate air flow and pollutant dispersion within an urban street canyon using Reynolds-averaged Navier-Stokes (RANS) equations and the Explicit Algebraic Reynolds Stress Models (EARSM) based on k-${\varepsilon}$ turbulence model to close the equation system. The numerical model is performed with ANSYS-CFX code. Vehicle emissions were simulated as double line sources along the street. The numerical model was validated by the wind tunnel experiment results. Having established this, the wind flow and pollutant dispersion in urban street canyons (with six roof shapes buildings) are simulated. The numerical simulation results agree reasonably with the wind tunnel data. The results obtained in this work, indicate that the flow in 3D domain is more complicated; this complexity is increased with the presence of trees and variability of the roof shapes. The results also indicated that the largest pollutant concentration level for two walls (leeward and windward wall) is observed with the upwind wedge-shaped roof. But the smallest pollutant concentration level is observed with the dome roof-shaped.

삼각날개 와류장에서의 옆미끄럼과 받음각의 복합효과 (Combined Effects of Sideslip and AOA on the Vortical Flow of Delta Wing)

  • 이기영;손명환
    • 한국항공우주학회지
    • /
    • 제31권2호
    • /
    • pp.17-24
    • /
    • 2003
  • 본 논문은 $65^{\circ}$ 후퇴각을 갖는 삼각날개에 대하여 뿌리시위를 기준으로 한 레이놀즈수 $1.76{\times}10^6$에서 정상 풍동실험에 의한 결과를 보였다. 풍동실험은 총 188개의 압력공과 다채널 데이터 처리 시스템을 사용하여 날개 윗면에서의 압력 분포를 측정하였다. 날개 윗면에서의 압력분포의 분석으로부터 옆미끄럼각과 받음각이 날개의 공력 특성에 미치는 복합적인 영향에 대한 직관을 얻을 수 있었다. 옆미끄럼각이 있는 경우, 바람쪽 날개의 와류강도는 바람 반대쪽 날개의 화류강도보다 훨씬 강하였다. 이와 같은 좌우 날개의 비대칭적인 압력분포로 인하여 음의 롤링모멘트가 발생하였다. 하지만, 일정 범위의 받음각과 옆미끄럼각(${\alpha}$=$24^{\circ}{\sim}36^{\circ}C$, ${\beta}$=$-5^{\circ}{\sim}-15^{\circ}C$)에서는 롤링모멘트의 방향이 갑자기 바뀌는 롤링모멘트 역전현상을 관찰할 수 있었다.