• Title/Summary/Keyword: Windturbine generation

Search Result 2, Processing Time 0.02 seconds

Assessment of Optimal Constitution Rate of Windturbine and Photovoltaic Sources for Stable Operation of Microgird (마이크로그리드의 안정적 운영을 위한 풍력 및 태양광 발전원 최적 구성 비율 산정 방안 연구)

  • Lee, Su-Mi;Chun, Yeong-Han
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.272-276
    • /
    • 2010
  • Renewable energy sources are considered to be environment-friendly alternatives those are increasingly introduced in the power systems. Microgrid is one of the systems in which renewable sources have a main role as a energy suppliers. Decision of constitution rates of renewable energy sources is very important for the economical and stable operation of microgird systems. In this paper, we present a method to assess an optimal constitution rate of renewable sources especially of windturbine and photovoltaic systems.

An Experimental Study on a Windheat Generation System with a Savonius Wind Turbine

  • Kim, Young-Jung;Ryou, Young-Sun;Kang, Geum-Choon;Paek, Yee;Yun, Jin-Ha;Kang, Youn-Ku
    • Agricultural and Biosystems Engineering
    • /
    • v.6 no.2
    • /
    • pp.65-69
    • /
    • 2005
  • A windheat generation system with a Savonius windturbine was developed and the performance was evaluated through field tests. The system consisted of a heat generation drum, heat exchanger, water storage tank, and two circulation pumps. Frictional heat is created by rotation of a rotor inside the drum containing thermo oil, and was used to heat water. In order to estimate the capacity of this windheat generation system, weather data was collected for one year at the site near the windheat generation system. Wind Power from the savonius wind turbine mill was transmitted to the heat generation system with an one-to-three gear system. Starting force to rotate the savonius wind turbine and the whole system including the windheat generation system were 1.0 and 2.5 kg, respectively. Under the outdoor wind condition, maximum speed of the rotor in the drum was 75rpm at wind speed 6.5 m/sec, which was not fast enough to produce heat for greenhouse heating. Annual cumulative hours for wind speeds greater than 5 m/sec at height of 10, 20, 30 m were 190, 300 and 1020 hrs, respectively. A $5^{\circ}C$ increase in water temperature was achieved by the windheat generation system under the tested wind environment.

  • PDF