• Title/Summary/Keyword: Windshield

Search Result 98, Processing Time 0.026 seconds

The Curve Equation of a Flat Wiper Spring Rail Inducing Uniformly Distributed Loads (균일 분포하중을 주는 플렛와이퍼 스프링레일의 곡면형상식 유도)

  • Yoon, Young-Sam;Kim, Cheol
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.4
    • /
    • pp.79-83
    • /
    • 2010
  • Recently, the flat wiper which is one piece wiper and subjected to a pressing force at a single center point is gaining wide applications on automotive windshields. However, nonuniform reactive pressure distributions takes place, so that wiping is not completed at such locations. The wiping performance of the flat wiper is best when a wiper and a curved windshield have perfect contact without gaps under the specified pressing force of 13 ~ 15 gf/cm. Therefore, it is necessary that the realistic curvature equation of a wiper spring-rail should be obtained. Finite element analysis, CATIA script-macro function, and the least square method were utilized to find out the curvature of a spring-rail for a perfect contact with a windshield under a specified concentrated load. The curvature equation became the third order polynomial.

Contact Pressure Analysis of a Windshield Wiperblade (와이퍼 블레이드의 누름압 해석)

  • Lee, Byoung-Soo;Shin, Jin-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.3
    • /
    • pp.51-57
    • /
    • 2006
  • The contact pressure distribution between a rubber wiper blade and a glass windshield is a major factor for wiping performance. A modeling and simulation method has been developed to forecast the contact pressure distribution on a wiper blade. For modeling multi-body dynamics of an wiper linkage system and flexible nature of wiper blade, ADAMS and ADAMS/flex are employed. A simulation study has been also conducted to obtain contact pressure distribution. Comparison between simulation and measurement is provided to ensure fidelity of the model and the simulation method.

Super-multiview windshield display for driving assistance

  • Urano, Yohei;Kashiwada, Shinji;Ando, Hiroshi;Nakamura, Koji;Takaki, Yasuhiro
    • Journal of Information Display
    • /
    • v.12 no.1
    • /
    • pp.43-46
    • /
    • 2011
  • A three-dimensional windshield display (3D-WSD) can present driving information at the same depth as the objects in the outside scene. Herein, a super-multiview 3D-WSD is proposed because the super-multiview display technique provides smooth motion parallax. Motion parallax is the only physiological cue for perceiving the depth of a 3D image displayed at a far distance, which cannot be perceived by vergence and binocular parallax. A prototype system with 36 views was constructed, and the discontinuity of motion parallax and accuracy of depth perception were evaluated.

Numerical Analysis for Improvement of Windshield Defrost Performance of Electric Vehicle (전기자동차 전면유리 제상성능 개선을 위한 전산수치 해석)

  • Kim, Hyun-Il;Kim, Jae-Sung;Kim, Myung-Il;Lee, Jae Yeol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.477-484
    • /
    • 2019
  • As the residence time in the vehicle increases, the passenger desires a pleasant and stable riding environment in addition to the high driving performance of the vehicle. The windshield defrosting performance is one of the performance requirements that is essential for driver's safe driving. In order to improve the defrosting performance of the windshield of a vehicle, relevant elements such as the shape of the defrost nozzle should be appropriately designed. In this paper, CFD based numerical analysis is conducted to improve defrost performance of small electric vehicles. The defrost performance analysis was performed by changing the angle of the defrost nozzle and the guide vane that spray hot air to the windshield of the vehicle. Numerical simulation results show that the defrosting performance is best when the defrost nozzle angle is $70^{\circ}$ and the guide vane installation angle is $60^{\circ}$. Based on the analytical results, the defrosting experiment was performed by fabricating the defrost nozzle and the guide vane. As a result of the experiment, it is confirmed that the frost of windshield is removed by 80% within 20 minutes, and it is judged that the defrost performance satisfying the FVMSS 103 specification is secured.

A Numerical Study of a Vehicle Windshield Defrosting Mechanism (자동차 전면유리 제상 메커니즘의 수치해석 연구)

  • Kang, Seung-Jae;Jun, Yong-Du;Lee, Kum-Bae
    • Journal of Energy Engineering
    • /
    • v.19 no.3
    • /
    • pp.151-155
    • /
    • 2010
  • Adequate visibility through a vehicle windshield and frost melting period are critical aspects of major design parameters. To make progress in this area, a good understanding of the flow behavior and heat transfer characteristics produced by the HVAC module is required. The computational study was used to perform the parametric investigation into the defroster nozzle's performance with a full-scale model. The study highlights the drawbacks of current designs and points the way to improve passive defrosting mechanism. The results show that the current design of the defroster nozzles deliver the maximum airflow in the vicinity of the lower part of the windshield, which yields unsatisfactory visibility. Defrosting performance was excellent when the injection angle of the defrost nozzle was 45 degree. The numerical analysis satisfies the criteria provided by NHTSA.

Estimation of Contact Pressure of a Flat Wiper Blade by Dynamic Analysis (플랫 타입 와이퍼 블레이드의 동적 해석을 통한 누름압 예측)

  • Kim, Wook-Hyeon;Park, Tae-Won;Chai, Jang-Bom;Jung, Sung-Pil;Chung, Won-Sun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.7
    • /
    • pp.837-842
    • /
    • 2010
  • The wiper system of a vehicle is important because it wipes the windshield, thereby enabling drivers to see through the windshield even under conditions of rain and snow. The blade is the key component of the wiper system because it wipes the windshield. When wiper-arm spring causes the blade to be pressed on the windshield optimum performance of wiping can be achieved when appropriate contact pressure is maintained. In this study, a dynamic analysis of the wiper system is carried out. A three-dimensional finite-element model of the wiper system is generated using SAMCEF, a commercial structural dynamic analysis program. The distribution of the contact pressure of the blade in its dynamic state is calculated. The simulation result is compared to the experiment result. Using the results of this study, the contact pressure of the blade can be estimated.

Effects of an Inlet Guide Vane on the Flowrate Distribution Characteristics of the Nozzle Exit in a Defrost Duct System (성에제거 덕트 입구 가이드베인 형상이 노즐출구 유량분포특성에 미치는 영향)

  • Kim, Duck-Jin;Lee, Jee-Keun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.88-96
    • /
    • 2008
  • Effects of the duct inlet guide vane on the flowrate distribution characteristics of the defroster nozzle exit in a defrost duct system were investigated experimentally to design the optimum heating, ventilation and air conditioning (HVAC) system applied in an automotive compartment. A 3-dimensional hot-wire anemometer system was used to measure the velocity field in the vicinity of the defroster nozzle jet flow and the velocity distributions near the windshield interior surface. At first, two cases of with- and without-duct inlet guide vanes were considered as the test condition, and then three cases of the duct inlet guide vane were tested to determine the optimum guide vane shape and their positions. The arrangement of the duct inlet guide vanes has an effect on the improved flowrate distribution at the defroster nozzle exit and near the windshield interior surface. However, the application of the lots of guide vane to control the flow direction leads to increase the flow resistance, resulting in the decreased flowrate issuing from the defroster nozzle. The shape of the duct inlet guide vane affects not only the flowrate distribution between the driver side and the assistant driver side but also the reduction of the flow resistance in the defrost duct system.

Flat-type 와이퍼 블레이드의 내구 신뢰성 향상을 위한 연구

  • Jeong, Won-Seon;Seo, Yeong-Gyo;Kim, Hong-Jin;Jeong, Do-Hyeon
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2011.06a
    • /
    • pp.107-113
    • /
    • 2011
  • The windshield wiper consists of 4 parts: a blade, an arm, a linkage and a motor. The wiper blade makes contact with the windshield and is designed to be operated normally at an angle of 30~50 degrees to the front glass. If the contact pressure between the wiper blade and windshield surface is too high, noise and wear of the rubber will result. On the other hand, if the contact pressure is too low, the performance will do badly, since foreign substances such as dust and stains will not be removed well. The pressure and friction of the wiper blade has a great influence on its effectiveness in cleaning the front window. This is due to the contact of the rubber with the window. This paper presents the dynamic analysis method to estimate the performance of the flat type blade of the wiper system. The blade has a nonlinear characteristic since the rubber is an incompressible hyper-elastic and visco-elastic material. Thus, Structural dynamic analysis using a complex contact model for the blade is performed to find the characteristics of the blade. The flexible multi-body dynamic model is verified by the comparison between test and analysis result. Also, the optimization using the central composite design table is performed.

  • PDF

Design Flexible T-DMB Antenna with Common Mode Stub (Common Mode Stub를 이용한 Flexible T-DMB 안테나 구현)

  • Lee, Seon-Hyeon;Kim, Ho-Jin;Lee, Sang-Seok;Lee, Young-Hun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.6
    • /
    • pp.605-612
    • /
    • 2011
  • In this paper, we designed detachable T-DMB receiver antenna on the windshield of the car. Designed antenna is composed of only copper and feeders. To escape completely from driver's sight, it exists edging of windshield. Proposed antenna by considering body of properties and characteristics of the antenna input impedance have T-DMB frequency band(174~216 MHz). Proposed flexible antenna with Common Mode Stub is satisfied characteristics less than -5 dB antenna input return loss regardless of installation position on windshield.

Numerical Study of the Design Factors for Flow Analysis of the Automotive Defrost Nozzle (자동차 Defrost 노즐 유동의 설계인자에 대한 수치적 연구)

  • 박원규;배인호
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.217-224
    • /
    • 2003
  • The frost and mist in the windshield disturb the sight of driver and passengers especially in winter. This possibly leads to safety problems. In order to export automobiles to the countries of North America, the safety regulation requires the frost of selected area should be completely melted in 30 minutes. The defrost pattern and time for melting of frost are fully dependent on the flow and temperature field near the windshield. Furthermore, the flow and temperature field near the windshield are dependent on the air discharged from defrost nozzle. The present work has been done for understanding the flow features of the discharged air and internal flow within the nozzle duct. The three dimensional Navier-Stokes code was used for performing the generic A/C duct flow analysis. The present results were nearly coincided with experimental data. To perform the parametric study of the effectiveness of the number of guide vanes, the discharge angle and the location of nozzle were changed. The ratio of volume flow rate through defrost nozzle and side exit were compared to investigate the influence of parameters on the effectiveness of defrost nozzle. The velocity profiles and flow patterns of the defrost nozzle duct were also analyzed.