• 제목/요약/키워드: Windows OS

검색결과 155건 처리시간 0.018초

스마트 시설환경 환경변수 분석을 위한 Open source 기반 인공지능 활용법 분석 (A Benchmark of AI Application based on Open Source for Data Mining Environmental Variables in Smart Farm)

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.159-159
    • /
    • 2017
  • 스마트 시설환경은 대표적으로 원예, 축산 분야 등 여러 형태의 농업현장에 정보 통신 및 데이터 분석 기술을 도입하고 있는 시설화된 생산 환경이라 할 수 있다. 근래에 하드웨어적으로 급증한 스마트 시설환경에서 생산되는 방대한 생육/환경 데이터를 올바르고 적합하게 사용하기 위해서는 일반 산업 현장과는 차별화 된 분석기법이 요구된다고 할 수 있다. 소프트웨어 공학 분야에서 연구된 빅데이터 처리 기술을 기계적으로 농업 분야의 빅데이터에 적용하기에는 한계가 있을 수 있다. 시설환경 내/외부의 다양한 환경 변수는 시계열 데이터의 난해성, 비가역성, 불특정성, 비정형 패턴 등에 기인하여 예측 모델 연구가 매우 난해한 대상이기 때문이라 할 수 있다. 본 연구에서는 근래에 관심이 급증하고 있는 인공신경망 연구 소프트웨어인 Tensorflow (www.tensorflow.org)와 대표적인 Open source인 OpenNN (www.openn.net)을 스마트 시설환경 환경변수 상호간 상관성 분석에 응용하였다. 해당 소프트웨어 라이브러리의 운영환경을 살펴보면 Tensorflow 는 Linux(Ubuntu 16.04.4), Max OS X(EL capitan 10.11), Windows (x86 compatible)에서 활용가능하고, OpenNN은 별도의 운영환경에 대한 바이너리를 제공하지 않고 소스코드 전체를 제공하므로, 해당 운영환경에서 바이너리 컴파일 후 활용이 가능하다. 소프트웨어 개발 언어의 경우 Tensorflow는 python이 기본 언어이며 python(v2.7 or v3.N) 가상 환경 내에서 개발이 수행이 된다. 주의 깊게 살펴볼 부분은 이러한 개발 환경의 제약으로 인하여 Tensorflow의 주요한 장점 중에 하나인 고속 연산 기능 수행이 일부 운영 환경에 국한이 되어 제공이 된다는 점이다. GPU(Graphics Processing Unit)의 제공하는 하드웨어 가속기능은 Linux 운영체제에서 활용이 가능하다. 가상 개발 환경에 운영되는 한계로 인하여 실시간 정보 처리에는 한계가 따르므로 이에 대한 고려가 필요하다. 한편 근래(2017.03)에 공개된 Tensorflow API r1.0의 경우 python, C++, Java언어와 함께 Go라는 언어를 새로 지원하여 개발자의 활용 범위를 매우 높였다. OpenNN의 경우 C++ 언어를 기본으로 제공하며 C++ 컴파일러를 지원하는 임의의 개발 환경에서 모두 활용이 가능하다. 특징은 클러스터링 플랫폼과 연동을 통해 하드웨어 가속 기능의 부재를 일부 극복했다는 점이다. 상기 두 가지 패키지를 이용하여 2016년 2월부터 5월 까지 충북 음성군 소재 딸기 온실 내부에서 취득한 온도, 습도, 조도, CO2에 대하여 Large-scale linear model을 실험적(시간단위, 일단위, 주단위 분할)으로 적용하고, 인접한 세그먼트의 환경변수 예측 모델링을 수행하였다. 동일한 조건의 학습을 수행함에 있어, Tensorflow가 개발 소요 시간과 학습 실행 속도 측면에서 매우 우세하였다. OpenNN을 이용하여 대등한 성능을 보이기 위해선 병렬 클러스터링 기술을 활용해야 할 것이다. 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련을 위한 연구가 필요하다.

  • PDF

스마트팜 빅데이터 분석을 위한 이기종간 심층학습 기법 연구 (A Study on Deep Learning Methodology for Bigdata Mining from Smart Farm using Heterogeneous Computing)

  • 민재기;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.162-162
    • /
    • 2017
  • 구글에서 공개한 Tensorflow를 이용한 여러 학문 분야의 연구가 활발하다. 농업 시설환경을 대상으로 한 빅데이터의 축적이 증가함과 아울러 실효적인 정보 획득을 위한 각종 데이터 분석 및 마이닝 기법에 대한 연구 또한 활발한 상황이다. 한편, 타 분야의 성공적인 심층학습기법 응용사례에 비하여 농업 분야에서의 응용은 초기 성장 단계라 할 수 있다. 이는 농업 현장에서 취득한 정보의 난해성 및 완성도 높은 생육/환경 모델링 정보의 부재로 실효적인 전과정 처리 기술 도출에 소요되는 시간, 비용, 연구 환경이 상대적으로 부족하기 때문일 것이다. 특히, 센서 기반 데이터 취득 기술 증가에 따라 비약적으로 방대해진 수집 데이터를 시간 복잡도가 높은 심층 학습 모델링 연산에 기계적으로 단순 적용할 경우 시간 효율적인 측면에서 성공적인 결과 도출에 애로가 있을 것이다. 매우 높은 시간 복잡도를 해결하기 위하여 제시된 하드웨어 가속 기능의 경우 일부 개발환경에 국한이 되어 있다. 일례로, 구글의 Tensorflow는 오픈소스 기반 병렬 클러스터링 기술인 MPICH를 지원하는 알고리즘을 공개하지 않고 있다. 따라서, 본 연구에서는 심층학습 기법 연구에 있어서, 예상 가능한 다양한 자원을 활용하여 최대한 연산의 결과를 빨리 도출할 수 있는 하드웨어적인 접근 방법을 모색하였다. 호스트에서 수행하는 일방적인 학습 알고리즘과 달리 이기종간 심층 학습이 가능하기 위해선 우선, NFS(Network File System)를 이용하여 데이터 계층이 상호 연결이 되어야 한다. 이를 위해서 고속 네트워크를 기반으로 한 NFS의 이용이 필수적이다. 둘째로 제한된 자원의 한계를 극복하기 위한 메모 공유 라이브러리가 필요하다. 셋째로 이기종간 프로세서에 최적화된 병렬 처리용 컴파일러를 이용해야 한다. 가장 중요한 부분은 이기종간의 처리 능력에 따른 작업을 고르게 분배할 수 있는 작업 스케쥴링이 수행되어야 하며, 이는 처리하고자 하는 데이터의 형태에 따라 매우 가변적이므로 해당 데이터 도메인에 대한 엄밀한 사전 벤치마킹이 수행되어야 한다. 이러한 요구조건을 대부분 충족하는 Open-CL ver1.2(https://www.khronos.org/opencl/)를 이용하였다. 최신의 Open-CL 버전은 2.2이나 본 연구를 위하여 준비한 4가지 이기종 시스템에서 모두 공통적으로 지원하는 버전은 1.2이다. 실험적으로 선정된 4가지 이기종 시스템은 1) Windows 10 Pro, 2) Linux-Ubuntu 16.04.4 LTS-x86_64, 3) MAC OS X 10.11 4) Linux-Ubuntu 16.04.4 LTS-ARM Cortext-A15 이다. 비교 분석을 위하여 NVIDIA 사에서 제공하는 Pascal Titan X 2식을 SLI로 구성한 시스템을 준비하였다. 개별 시스템에서 별도로 컴파일 된 바이너리의 이름을 통일하고, 개별 시스템의 코어수를 동일하게 균등 배분하여 100 Hz의 데이터로 입력이 되는 온도 정보와 조도 정보를 입력으로 하고 이를 습도정보에 Linear Gradient Descent Optimizer를 이용하여 Epoch 10,000회의 학습을 수행하였다. 4종의 이기종에서 총 32개의 코어를 이용한 학습에서 17초 내외로 연산 수행을 마쳤으나, 비교 시스템에서는 11초 내외로 연산을 마치는 결과가 나왔다. 기보유 하드웨어의 적절한 활용이 가능한 심층학습 기법에 대한 연구를 지속할 것이다

  • PDF

실시간 CFD 모델링을 위한 오픈소스 분산 컴퓨팅 기술 연구 (A Research about Open Source Distributed Computing System for Realtime CFD Modeling (SU2 with OpenCL and MPI))

  • 이준엽;오종우;이동훈
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 2017년도 춘계공동학술대회
    • /
    • pp.171-171
    • /
    • 2017
  • 전산유체역학(CFD: Computational Fluid Dynamics)를 이용한 스마트팜 환경 내부의 정밀 제어 연구가 진행 중이다. 시계열 데이터의 난해한 동적 해석을 극복하기위해, 비선형 모델링 기법의 일종인 인공신경망을 이용하는 방안을 고려하였다. 선행 연구를 통하여 환경 데이터의 비선형 모델링을 위한 Tensorflow활용 방법이 하드웨어 가속 기능을 바탕으로 월등한 성능을 보임을 확인하였다. 그럼에도 오프라인 일괄(Offline batch)처리 방식의 한계가 있는 인공신경망 모델링 기법과 현장 보급이 불가능한 고성능 하드웨어 연산 장치에 대한 대안 마련이 필요하다고 판단되었다. CFD 해석을 위한 Solver로 SU2(http://su2.stanford.edu)를 이용하였다. 운영 체제 및 컴파일러는 1) Mac OS X Sierra 10.12.2 Apple LLVM version 8.0.0 (clang-800.0.38), 2) Windows 10 x64: Intel C++ Compiler version 16.0, update 2, 3) Linux (Ubuntu 16.04 x64): g++ 5.4.0, 4) Clustered Linux (Ubuntu 16.04 x32): MPICC 3.3.a2를 선정하였다. 4번째 개발환경인 병렬 시스템의 경우 하드웨어 가속는 OpenCL(https://www.khronos.org/opencl/) 엔진을 이용하고 저전력 ARM 프로세서의 일종인 옥타코어 Samsung Exynos5422 칩을 장착한 ODROID-XU4(Hardkernel, AnYang, Korea) SBC(Single Board Computer)를 32식 병렬 구성하였다. 분산 컴퓨팅을 위한 환경은 Gbit 로컬 네트워크 기반 NFS(Network File System)과 MPICH(http://www.mpich.org/)로 구성하였다. 공간 분해능을 계측 주기보다 작게 분할할 경우 발생하는 미지의 바운더리 정보를 정의하기 위하여 3차원 Kriging Spatial Interpolation Method를 실험적으로 적용하였다. 한편 병렬 시스템 구성이 불가능한 1,2,3번 환경의 경우 내부적으로 이미 존재하는 멀티코어를 활용하고자 OpenMP(http://www.openmp.org/) 라이브러리를 활용하였다. 64비트 병렬 8코어로 동작하는 1,2,3번 운영환경의 경우 32비트 병렬 128코어로 동작하는 환경에 비하여 근소하게 2배 내외로 연산 속도가 빨랐다. 실시간 CFD 수행을 위한 분산 컴퓨팅 기술이 프로세서의 속도 및 운영체제의 정보 분배 능력에 따라 결정된다고 판단할 수 있었다. 이를 검증하기 위하여 4번 개발환경에서 운영체제를 64비트로 개선하여 5번째 환경을 구성하여 검증하였다. 상반되는 결과로 64비트 72코어로 동작하는 분산 컴퓨팅 환경에서 단일 프로세서 기반 멀티 코어(1,2,3번) 환경보다 보다 2.5배 내외 연산속도 향상이 있었다. ARM 프로세서용 64비트 운영체제의 완성도가 낮은 시점에서 추후 성공적인 실시간 CFD 모델링을 위한 지속적인 검토가 필요하다.

  • PDF

초고진공계재료 (UHV Materials)

  • 박동수
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 1998년도 제14회 학술발표회 논문개요집
    • /
    • pp.24-24
    • /
    • 1998
  • 반도체장비를 포함하는 초고진공장비의 園훌化가 급속히 그리고 절실히 요구되고 있는 것이 현실정이다. 當面해서 실현할 국산진공장비의 대상은 廣範圍하다. 즉, 각종 진공 pump ( (rotary, dry, diffusion, cryo, ion, turbo melecular pump), 진공 chamber, 진공 line, gate valve 를 위 시 한 진공 V머ve, flange, gasket, fl않d야lU, mainpulater 퉁 진공 部品이 다. 진공계 의 핵심 은 適切하고 優良한 진공재료의 선태파 사용이다. 진공장비는 사용자가 원하는 진공도를 원하 는 시간 동안 륨空度를 유지해 주어야 한다. 진공재료 선태의 기준사항은:(1) 기체의 透過성 (2) 薰했훌 (3) 혔體放出특성 - -outgassing과 degassing- (4) 機械的 량훌度 (5) 온도 의존성 (6) 化學톡성 (7) 加I성 및 鎔接 성 (8) 課電특성 (9) 磁氣특성 (10) 高速함子 및 放射線 특성 (11) 經濟성 및 調達생 둥이 다. 우량한 초고진공계재료는 풍부하게 개발되어 왔고, 또 新材料들이 개발되고 있다. 여기에서는 주로 초고진공 내지는 극고진공계의 構造材料, 機能材料, 部品材料 일반파 몇가지 신재료의 특 성에 관해서 記述한다. M Mild SteeHSAE, 1112, 1010, 1020, 1022, etc)., S Stainless SteeHAlSI, 304, 304L, 310, 316, 321, 347): 구조재료, chamber, fl하1ges A Aluminum과 Alloys (1060, 1100, 2014, 4032, 6(뻐1): 구조재료, chamber, flanges, gaskets A AI, Al 떠loy는 SS에 代替하는 역 할올 시 작하고 있다. C Copper, Copper Alloys(C11$\alpha$)0, C26800, C61400, Cl7200): 내장인자, gasket, cryopanel, tubing T Titanium, Ziriconium, Haf띠um 및 Alloys: 특히 Ti은 10n pump 용 getter material 이 외 에 U UHV,XHV용 chamber계로서 관심올 끌고 있다. N Nickel, Nickel Alloys (200, 204, 211, monel, nichrome): 부식 방지 , 전자장치 , 자기 장치 귀 금속(Ag, Au, Pt, Pd, Rh, Ir, Os, Ru): 보조부품, gasket, filament, coating, thermocouple, 접 합부위 T TiC, SiC, zrC, HfC, TaC 둥의 탄화물과, BN, TiN, AlN 동의 질화물, 붕화물이 둥장하고 었 다. 유리: Soda Lime, Borosilicate, Potash Soda Lead: View Port, Chamber envelope C Ceramics: AlZ03, BeO, MgO, zrOz, SiOz, MgOzSiOz, 3Alz032SiOz, Z$textsc{k}$hSiOz S상N4: e electrical, thermal insulators, crucibles, boats, single crystals, sepctr려 windows 저자는 최근 저자들이 발견한 Zr-Ti-Cu-Ni-Be amorphous alloys coated cham뾰r가 radiation p proof로 이용될 수 있는 사실을 점검하고 었다 .. Z.Y. Hua 들은 Cs3Sb를 새로운 photocathode 재료로 보고하고 있다.

  • PDF

분포형 모형을 이용한 소유역 연계 낙동강 홍수해석시스템 구축 (Construction of a Sub-catchment Connected Nakdong-gang Flood Analysis System Using Distributed Model)

  • 최윤석;원영진;김경탁
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2018년도 학술발표회
    • /
    • pp.202-202
    • /
    • 2018
  • 본 논문에서는 분포형 강우-유출 모형인 GRM(Grid based Rainfall-runoff Model)(최윤석, 김경탁, 2017)을 이용해서 낙동강 유역을 대상으로 대유역 홍수해석시스템을 구축하고, 유출해석을 위한 실행시간을 평가하였다. 유출모형은 낙동강의 주요 지류와 본류를 소유역으로 구분하여 모형을 구축하고, 각 소유역의 유출해석 결과를 실시간으로 연계할 수 있도록 하여 낙동강 전체 유역의 유출모형을 구축하였다. 이와 같이 하나의 대유역을 다수의 소유역시스템으로 분할하여 모형을 구축할 경우, 유출해석시스템 구성이 복잡해지는 단점이 있으나, 소유역별로 각기 다른 자료를 이용하여 다양한 해상도로 유출해석을 할 수 있으므로, 소유역별 특성에 맞는 유출모형 구축이 가능한 장점이 있다. 또한 각 소유역시스템은 별도의 프로세스로 계산이 진행되므로, 대유역을 고해상도로 해석하는 경우에도 계산시간을 단축할 수 있다. 본 연구에서는 낙동강 유역을 20개(본류 구간 3개, 1차 지류 13개, 댐상류 4개)의 소유역으로 분할하여 계산 시간을 검토하였으며, 최종적으로 21개(본류 구간 3개, 1차 지류 13개, 댐상류 5개)의 소유역으로 분할하여 유출해석시스템을 구축하였다. 댐 상류 유역은 댐하류와 유량전달이 없이 독립적으로 모의되고, 댐과 연결된 하류 유역은 관측 방류량을 상류단 하천의 경계조건으로 적용한다. 지류 유역은 본류 구간과 연결되고, 지류의 계산 유량은 본류와의 연결지점에 유량조건으로 실시간으로 입력된다. 이때 본류와 지류의 유량 연계는 데이터베이스를 매개로 하였다. 유출해석시스템의 성능을 평가하기 위해서 Microsoft 클라우드 서비스인 Azure를 이용하였다. 낙동강 유역을 20개 소유역으로 구성한 경우에서의 유출해석시스템의 속도 평가 결과 Azure virtual machine instance DS15 v2(OS : Windows Server 2012 R2, CPU : 2.4 GHz Intel $Xeon^{(R)}$ E5-2673 v3 20 cores)에서 1.5분이 소요 되었다. 계산시간 평가시 GRM은 'IsParallel=false' 옵션을 적용하였으며, 모의 기간은 24시간을 기준으로 하였다. 연구결과 분포형 모형을 이용한 대유역 유출해석시스템 구축이 가능했으며, 계산시간도 충분히 단축할 수 있었다. 또한 추가적인 CPU와 병렬계산을 적용할 경우, 계산시간은 더 단축될 수 있으며, 이러한 기법들은 분포형 모형을 이용한 대유역 유출해석시스템 구축시 유용하게 활용될 수 있을 것으로 판단된다.

  • PDF