• Title/Summary/Keyword: Windmill

Search Result 35, Processing Time 0.028 seconds

A Study on the Characteristics of Windmill Type Ultrasonic Motor (풍차형 초음파 모터의 특성 연구)

  • Lee, Jae-Hyung;Park, Tae-Gone
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07b
    • /
    • pp.636-640
    • /
    • 2003
  • As industrial technology was developed, necessity for small size motor was increased on various fields such as medical treatment and robotics. The motor should be simple structure, and it has easy process of manufacture to overcome the limit of miniaturization. So, "the windmill type ultrasonic motor" is enough to satisfy these conditions. In this paper, windmill type ultrasonic motor which was proposed by B.Koc and K.Uchino, was analyzed and fabricated with modified endcap shape. Displacements of arms of the proposed endcap were compared with the previous endcap, using the finite element analysis program (ANSYS). Better rotational characteristics was expected in proposed model as result of FEA. Experimentally, rotary motors of 3.5 [cm] diameter were fabricated, and the speed and torque of the motor were measured. As a result, speed and torque were changed in proportion to the electrical input voltages. And low efficiency which was different from an expectation was obtained in this motor. So, various problems should be improved for practical use.

  • PDF

Variable Structure Control Design of Windmill Power Systems

  • Long, Youjiang;Yamashita, Katsumi;Miyagi, Hayao
    • Proceedings of the IEEK Conference
    • /
    • 2000.07a
    • /
    • pp.395-398
    • /
    • 2000
  • The method of Variable Structure Control (VSC) design of windmill power systems is proposed. In the design of sliding mode control, we use Riccati equations arising in linear H$\^$$\infty$/ control to decide a stable sliding surface. Then the reachability to the sliding surface is realized by designing a nonlinear controller for the windmill power system. The capability of the proposed controller to damp out the oscillations of power and the robustness with respect to the system parameter variations and model errors are evaluated in the simulation study.

  • PDF

Torque Measurement System of Piezoelectric Ultrasonic Motor (압전 초음파 전동기의 토크측정 시스템)

  • Kim, Young-Gyoon;Kim, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1780-1782
    • /
    • 1999
  • The ultrasonic motor used here is the windmill type ultrasonic motor operated by single-phase AC source. A metal-ceramic composite component was used as the stator element to generate ultrasonic vibrations. The windmill type ultrasonic motors has only three components; a stator element of two wind-mill shape slotted metal endcaps, a rotor and a bearing. In this paper we proposed a system for torque measurement of piezoelectric ultrasonic motor.

  • PDF

Design of a Windmill-Shaped Loop Antenna for Polarization Diversity (편파 다이버시티를 위한 바람개비 형태의 루프 안테나 설계)

  • Kim, Doo-Soo;Ahn, Chi-Hyung;Im, Yun-Taek;Lee, Sung-Jun;Lee, Kwang-Chun;Park, Wee-Sang
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.24-30
    • /
    • 2007
  • A windmill-shaped loop antenna is designed for polarization diversity. Its circumference is almost 10 times that of a conventional small loop antenna whose circumference is less than ${\lambda}/10$ but its the radiation pattern is omni-directional. An identical parasitic element is placed over the radiator to match the antenna input impedance. An equivalent transmission line and RLC circuit models are shown to fully describe for the windmill-shaped loop antenna. The proposed antenna has a bandwidth of 6 % with input VSWR less than 2:1 and a polarization purity of 15 dB at 2.6 GHz, and the gain of 1.5 dBi. The simulated and measured results show fairly good agreement.

A Study on the Revolution Characteristics of the Ultrasonic Motor with Windmill Type Structure (풍차형 구조를 갖는 초음파 전동기의 회전 특성에 관한 연구)

  • Kim, Jin-Su;Lee, Deok-Chul
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.10
    • /
    • pp.681-686
    • /
    • 1999
  • In this study, a windmill type ultrasonic motor operated by single-phase AC electric field was fabricated, and then revolution characteristics and 3-dimensional vibration mode of the ultrasonic motor were investigated. Brass metal was pressed with umbrella-type using metal mold, then slot of 4 kind was processed at various thickness. It was found that the revolution speed of the ultrasonic motor increased with decreasing the thickness of elastic body. The revolution speed of the ultrasonic motor increased with increasing the slots of elastic body. When the characteristics was measured, applied voltage was changed from $10V_{max}\; to\; 100V_{max}$. Then, revolution was began from $30V_{max}$, if voltage was applied over $90V_{max}$ revolution speed was saturated, and not increased. The maximum revolution speed was 510[rpm] when using elastic body with 6 slots and thickness of 0.15mm. And 3-dimensional displacement mode was rotated clockwise direction.

  • PDF

Experimental Assessment with Wind Turbine Emulator of Variable-Speed Wind Power Generation System using Boost Chopper Circuit of Permanent Magnet Synchronous Generator

  • Tammaruckwattana, Sirichai;Ohyama, Kazuhiro;Yue, Chenxin
    • Journal of Power Electronics
    • /
    • v.15 no.1
    • /
    • pp.246-255
    • /
    • 2015
  • This paper presents experimental results and its assessment of a variable-speed wind power generation system (VSWPGS) using permanent magnet synchronous generator (PMSG) and boost chopper circuit (BCC). Experimental results are obtained by a test bench with a wind turbine emulator (WTE). WTE reproduces the behaviors of a windmill by using servo motor drives. The mechanical torque references to drive the servo motor are calculated from the windmill wing profile, wind velocity, and windmill rotational speed. VSWPGS using PMSG and BCC has three speed control modes for the level of wind velocity to control the rotational speed of the wind turbine. The control mode for low wind velocity regulates an armature current of generator with BCC. The control mode for middle wind velocity regulates a DC link voltage with a vector-controlled inverter. The control mode for high wind velocity regulates a pitch angle of the wind turbine with a pitch angle control system. The hybrid of three control modes extends the variable-speed range. BCC simplifies the maintenance of VSWPGS while improving reliability. In addition, VSWPGS using PMSG and BCC saves cost compared with VSWPGS using a PWM converter.

Injection Molding Analysis of the Tub-drum for Drum Type Washer Using CAE (CAE를 이용한 드럼 세탁기용 Tub-drum의 사출 성형 해석)

  • Ye, Sang-Don;Min, Byeong-Hyeon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.9 no.2
    • /
    • pp.60-65
    • /
    • 2010
  • Injection molding process is one of the popular manufacturing methods to produce plastic parts with high efficiency and low cost. The tub-drum for drum type washer is made by an insert injection molding process with aluminum alloy insert of windmill type and has a big and complex structure consisted of many ribs to sustain the strength. In this paper, the volumetric shrinkages of rib part and bottom part surrounded by a windmill type insert are analyzed according to the vertical and circumferential direction of tub-drum. Volumetric shrinkage and its difference according to the height or radius of tub drum inform the designer to reduce the warpage of tub drum, and the optimal design of tub drum can be done from the those results. The change of volumetric shrinkage according to packing pressure is also analyzed. It is very important to analyze the volumetric shrinkage of tub drum because it generates the wearing phenomena at the rotating part connected to an aluminum alloy insert due to the warpage of tub drum.

Importance Of Tribology in Positive-Displacement Type of Fluid Machinery and Heat Engine

  • Nakahara, Tsunamitsu
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.3-8
    • /
    • 1998
  • The industrial revolution in England was based on the manufacturing systems by the power of water mill and rapidly progressed by the innovation of steam engine. It is no exaggeration to say that today's civilization is realized by the development of various types of power machinery, namely fluid machinery and heat engine. The electric energy is converted mainly from thermal energy (mainly steam) of mineral oil, coal and nuclear fuel through generator connected with steam turbine which is a kind of power machinery. There are various types of power machinery as shown in Tables 1a and 1b. They are classified into two types by use. One is absorption type of fluid and/or thermal energy, for examples, windmill and heat engine. The other is provision type of the energies for examples, pump, compressor and propulsion. By flow type, they are also classified by two types, turbo type and positive-displacement type. The turbo type began from water mill and windmill and evolve to steam turbine and finally to gas turbine. The positive-displacement type started from reciprocating water pump and developed into steam engine and changed to reciprocating combustion engine. The pumps and motors used in oil hydraulic system for power control are also positive-displacement type.

  • PDF

Improving the Self-starting Performance of a VAWT (수직축 풍차의 자기동 성능 개선)

  • Cheong, Seon-Hwan;Choi, Seong-Dae;Shon, Jae-Yul;Mag-isa, Alexander;Kim, Shin-Ho;Choi, Myoung-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.5 no.4
    • /
    • pp.13-20
    • /
    • 2006
  • The inherent problem of a Darrieus wind turbine is its inability to self-start. Usually, a motor is used to provide angular acceleration until lift forces are produced in the airfoil blades or up until the turbine can already sustain its speed on its own. This paper describes a method of improving the self-starting of an H-type Darrieus vertical axis wind turbine (VAWT) by incorporating a helical Savonius turbine thus utilizing a drag-lift combination. The effect of each turbine in the combination relative to each other is investigated by testing a prototype windmill consisting of three NACA 0015 airfoil blades combined with a Savonius rotor with a helix angle of 180 degrees and whose swept area equals 30% of the entire turbine.

  • PDF

Effects of Temperature on the Development of Chinese Windmill Butterfly, Atrophaneura alcinous (Lepidoptera: Papilionidae)

  • Kim, Seong-Hyun;Hong, Seong-Jin;Park, Hae-Chul;Lee, Young-Bo;Kim, Nam Jung
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.25 no.2
    • /
    • pp.159-162
    • /
    • 2012
  • The Chinese windmill butterfly, Atrophaneura alcinous, is an important butterfly for exhibition in butterfly garden. The objective of this study was to determine the effect of temperature on A. alcinous in the laboratory. Development of A. alcinous reared on leaves of Aristolochia contorta was investigated at five constant the laboratory condition (20, 22.5, 25, 27.5 and $30^{\circ}C$) and at relative humidity of 60% with a photoperiod of 14:10 (L:D). Temperatures have been suggested as an important determinant of developmental rate, lifespan and mortality in invertebrates. As the temperature increased, the length of the developmental period gradually decreased. The developmental time (pupation) from egg hatching to pupation was respectively 25.8, 23.6, 19.6, 15.5, and 12.9 days at the temperatures of 20, 22.5, 25, 27.5 and $30^{\circ}C$. And pupation was respectively 40.0, 30.0, 63.4, 50.0, 23.3% at the temperatures of 20, 22.5, 25, 27.5 and $30^{\circ}C$. The developmental threshold temperature estimated for egg-to-pupae was 10.8, with a thermal constant of 230.4 degree-days. Therefore, the optimal developmental temperature for A. alninous was determined to be $25^{\circ}C$. To compare the effects of the total duration of chilling on the termination of diapause, larvae were subjected to a temperature of $8^{\circ}C$ from 60 to 120 days. The rate of termination of diapause was significantly higher at 60 days compared to other incubation period.