• Title/Summary/Keyword: Winding topology

Search Result 42, Processing Time 0.03 seconds

Suppression of Common-Mode Voltage in a Multi-Central Large-Scale PV Generation Systems for Medium-Voltage Grid Connection (중전압 계통 연계를 위한 멀티 센트럴 대용량 태양광 발전 시스템의 공통 모드 전압 억제)

  • Bae, Young-Sang;Kim, Rae-Young
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.31-40
    • /
    • 2014
  • This paper describes an optimal configuration for multi-central inverters in a medium-voltage (MV) grid, which is suitable for large-scale photovoltaic (PV) power plants. We theoretically analyze a proposed common-mode equivalent model for problems associated with multi-central transformerless-type three-phase full bridge(3-FB) PV inverters employing two-winding MV transformers. We propose a synchronized PWM control strategy to effectively reduce the common-mode voltages that may simultaneously occur. In addition, we propose that the existing 3-FB topology may also have the configuration of a multi-central inverter with a two-winding MV transformer by making a simple circuit modification. Simulation and experimental results of three 350kW PV inverters in a multi-central configuration verify the effectiveness of the proposed synchronization control strategy. The modified transformerless-type 3-FB topology for a multi-central PV inverter configuration is verified using an experimental prototype of a 100kW PV inverter.

Research on a New 12-Pulse Step-Up and Step-Down Aviation Auto-Transformer Rectifier

  • Jiang, Fan;Ge, Hong-juan;Dong, Xiao-xu;Zhang, Lu
    • Journal of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.266-276
    • /
    • 2018
  • This paper presents a new step-up and step-down multi-pulse auto-transformer rectifier unit (ATRU) topology. This structure can achieve a wide range of output voltages, which solves the problem of auto-transformer output voltage being difficult to regulate. Adding middle taps to the primary winding and reasonably setting the number of auto-transformer windings, constituted two groups of three-phase output voltages with a $30^{\circ}$ phase difference. Multi-pulse output DC voltage is obtained after a three-phase output voltage across two rectifier bridges and inter-phase reactor. Thus, the output DC voltage is related to the number and configuration of the auto-transformer winding. In this paper, the relationship between the voltage ratio of the auto-transformer and the ratio of winding, input current and auto-transformer kilovoltampere rating are deduced and validated by simulations. On this basis, the output voltage range is optimized. An experiment on two different voltage ratio principle prototypes was carried out to verify the correctness of the analysis design.

Topology Design of BLDC Motor for Cogging Torque Reduction and Characteristic Analysis (코깅토크 저감을 위한 BLDC 전동기의 형상 설계 및 특성 분석)

  • Seo, Kyung-Sik;Jung, Sang-Yong;Lee, Cheol-Gyun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1519-1525
    • /
    • 2014
  • This paper presents the shape design for reducing cogging torque and characteristic analysis in Brushless DC (BLDC) motor. In this BLDC motor, ${\Delta}$(delta)-winding is applied, and in order to obtain the $60^{\circ}$ trapezoidal phase back-EMF waveform, permanent magnet shape design is carried out. And then, a method on specifying design parameters to effectively reduce cogging torque is developed. back-EMF, input voltage and input current which are analyzed by the Finite Element Method (FEM) are validated by experimental results. Also, efficiency calculations based on analysis and experimental results are performed and analyzed.

A Selection of PM-LSM Topology Structure for Ropeless Elevator System (Ropeless 엘리베이터 시스템용 영구자석 선형동기전동기 구조에 관한 연구)

  • Jin, Sang-Min;Chung, Koon-Seok;Zhu, Yu-Wu;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.973.1_974.1
    • /
    • 2009
  • One of the most important technical improvement required for ropeless elevator system to become practical is the improvements in overall system efficiency. Moreover, the predominant drawback of permanent magnet (PM) linear synchronous motor (LSM) is large detent force. Therefore, for the given volume the selection of high power density PM-LSM with low detent force is very imperative. In this paper, we will investigate the characteristics of thrust and detent force of PM-LSM under different motor topology structure. Finally, the long stator double-sided iron core type PM-LSM with fractional slot winding is the best choice for the ropeless elevator system.

  • PDF

Multi-objective Topology Optimization of Magneto-Thermal Problem considering Heat Flow Rate (열 유입률을 고려한 자계-열계 다목적 위상최적설계)

  • Shim, Ho-Kyung;Wang, Se-Myung;Moon, Hee-Gon;Hameyer, Kay
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.138-139
    • /
    • 2007
  • This research provides machine designers with some intuition to consider both, magnetic and heat transfer effects. A topological multi-objective function includes magnetic energy and heat inflow rate to the system, which equals to the total heat dissipation by conduction and convection. For the thermal field regarding the heat inflow, introduced as a reaction force, topology design sensitivity is derived by employing discrete equations. The adjoint variable method is used to avoid numerous sensitivity evaluations. As a numerical example, a C-core design excited by winding current demonstrates the strength of the multi-physical approach.

  • PDF

High Voltage SMPS Design based on Dual-Excitation Flyback Converter (이중 여자 플라이백 기반 고압 SMPS 설계)

  • Yang, Hee-Won;Kim, Seong-Ae;Park, Seong-Mi;Park, Sung-Jun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.115-124
    • /
    • 2017
  • This paper aims to develop an SMPS topology for handling a high range of input voltages based on a DC-DC flyback converter circuit. For this purpose, 2 capacitors of the same specifications were serially connected on the input terminal side, with a flyback converter of the same circuit configuration serially connected to each of them, so as to achieve high input voltage and an effect of dividing input voltage. The serially connected flyback converters have the transformer turn ratio of 1:1, so that each coil is used for the winding of a single transformer, which is a characteristic of doubly-fed configuration and enables the correction of input capacitor voltage imbalance. In addition, a pulse transformer was designed and fabricated in a way that can achieve the isolation and noise robustness of the PWM output signal of the PWM controller that applies gate voltage to individual flyback converter switches. PSIM simulation was carried out to verify such a structure and confirm its feasibility, and a 100W class stack was fabricated and used to verify the feasibility of the proposed high voltage SMPS topology.

A Study of the Three Port NPC based DAB Converter for the Bipolar DC Grid (양극성 직류 배전망에 적용 가능한 3포트 NPC 기반의 DAB 컨버터에 대한 연구)

  • Yun, Hyeok-Jin;Kim, Myoungho;Baek, Ju-Won;Kim, Ju-Yong;Kim, Hee-Je
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.336-344
    • /
    • 2017
  • This paper presents the three-port DC-DC converter modeling and controller design procedure, which is part of the solid-state transformer (SST) to interface medium voltage AC grid to bipolar DC distribution network. Due to the high primary side DC link voltage, the proposed converter employs the three-level neutral point clamped (NPC) topology at the primary side and 2-two level half bridge circuits for each DC distribution network. For the proposed converter particular structure, this paper conducts modeling the three winding transformer and the power transfer between each port. A decoupling method is adopted to simplify the power transfer model. The voltage controller design procedure is presented. In addition, the output current sharing controller is employed for current balancing between the parallel-connected secondary output ports. The proposed circuit and controller performance are verified by experimental results using a 30 kW prototype SST system.

Multiple Output Charger based on the Novel Time Division Multiple Control Technique (새로운 시분할 다중 제어 기법에 기반한 다중 출력 충전기)

  • Tran, Van-Long;Choi, Woo-Jin
    • Proceedings of the KIPE Conference
    • /
    • 2013.11a
    • /
    • pp.13-14
    • /
    • 2013
  • Multiple output converters (MOCs) are widely used for applications which require various kinds of the output voltages due to its advantages in cost, volume, and efficiency. However, most of the MOCs developed so far can regulate only one output tightly and require as many secondary windings in the transformer as the number of the outputs. In this paper, a novel Time Division Multiple Control (TDMC) method to regulate all the outputs in high precision is proposed and applied to the double ended forward converter for the multiple battery charger. Additional benefit of the proposed topology is to require only one secondary winding in the transformer for all the outputs. The proposed converter can charge two different kinds of batteries or same kind of batteries in different state of charges (SOCs) by CC/CV mode independently with the even degree of tight regulation, thereby satisfying the ripple requirements for each battery.

  • PDF

A Study on Novel Power Supply for Microwave Oven Using HVC Embedded High Frequency Transformer

  • Cho Jun-Seok;Park Kang-Hee;Jeong Byung-Hwan;Mok Hyung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.581-585
    • /
    • 2001
  • This paper describes novel high voltage capacitor(HVC) embedded high frequency transformer and novel inverter power supply topology for driving magnetron in microwave oven. This transformer is used to achieve down­sizing, low-cost and efficiency improvement. Proposed transformer has HVC in its secondary winding. Therefore, this transformer does not need external high voltage capacitor which used in conventional power supply. As use of this transformer, output voltage is shifted from ground to above 2000[V] and efficiency of microwave oven can be improved. The weight of proposed transformer is about one sixth of conventional one and efficiency is improved by seven percent compared to the efficiency of the conventional system.

  • PDF

Review on Magnetic Components: Design & Consideration in VHF Circuit Applications

  • Yahaya, Nor Zaihar;Raethar, Mumtaj Begam Kassim;Awan, Mohammad
    • Journal of Power Electronics
    • /
    • v.9 no.2
    • /
    • pp.180-187
    • /
    • 2009
  • When converters operate in megahertz range, the passive components and magnetic devices generate high losses. However, the eddy current issues and choices of magnetic cores significantly affect on the design stage. Apart from that, the components' reduction, miniaturization technique and frequency scaling are required as well as improvement in thermal capability, integration technique, circuit topologies and PCB layout optimization. In transformer design, the winding and core losses give great attention to the design stage. From simulation work, it is found that E-25066 material manufactured by AVX could be the most suitable core for high frequency transformer design. By employing planar geometry topology, the material can generate significant power loss savings of more than 67% compared to other materials studied in this work. Furthermore, young researchers can use this information to develop new approaches based on concepts, issues and methodology in the design of magnetic components for high frequency applications.