• Title/Summary/Keyword: Winding simulation

Search Result 291, Processing Time 0.028 seconds

Zero Torque Control of Switched Reluctance Motor for Integral Charging (충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어)

  • Rashidi, A.;Namazi, M.M;Saghaian, S.M.;Lee, D.H.;Ahn, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

Application of Multiple Parks Vector Approach for Detection of Multiple Faults in Induction Motors

  • Vilhekar, Tushar G.;Ballal, Makarand S.;Suryawanshi, Hiralal M.
    • Journal of Power Electronics
    • /
    • v.17 no.4
    • /
    • pp.972-982
    • /
    • 2017
  • The Park's vector of stator current is a popular technique for the detection of induction motor faults. While the detection of the faulty condition using the Park's vector technique is easy, the classification of different types of faults is intricate. This problem is overcome by the Multiple Park's Vector (MPV) approach proposed in this paper. In this technique, the characteristic fault frequency component (CFFC) of stator winding faults, rotor winding faults, unbalanced voltage and bearing faults are extracted from three phase stator currents. Due to constructional asymmetry, under the healthy condition these characteristic fault frequency components are unbalanced. In order to balanced them, a correction factor is added to the characteristic fault frequency components of three phase stator currents. Therefore, the Park's vector pattern under the healthy condition is circular in shape. This pattern is considered as a reference pattern under the healthy condition. According to the fault condition, the amplitude and phase of characteristic faults frequency components changes. Thus, the pattern of the Park's vector changes. By monitoring the variation in multiple Park's vector patterns, the type of fault and its severity level is identified. In the proposed technique, the diagnosis of faults is immune to the effects of unbalanced voltage and multiple faults. This technique is verified on a 7.5 hp three phase wound rotor induction motor (WRIM). The experimental analysis is verified by simulation results.

Multi-Domain Model for Electric Traction Drives Using Bond Graphs

  • Silva, Luis I.;De La Barrera, Pablo M.;De Angelo, Cristian H.;Aguilera, Facundo;Garcia, Guillermo O.
    • Journal of Power Electronics
    • /
    • v.11 no.4
    • /
    • pp.439-448
    • /
    • 2011
  • In this work the Multi-Domain model of an electric vehicle is developed. The electric domain model consists on the traction drive and allows including faults associated with stator winding. The thermal model is based on a spatial discretization. It receives the power dissipated in the electric domain, it interacts with the environment and provides the temperature distribution in the induction motor. The mechanical model is a half vehicle model. Given that all models are obtained using the same approach (Bond Graph) their integration becomes straightforward. This complete model allows simulating the whole system dynamics and the analysis of electrical/mechanical/thermal interaction. First, experimental results are aimed to validate the proposed model. Then, simulation results illustrate the interaction between the different domains and highlight the capability of including faults.

A Study on the Design and Analysis of a Voice Coil Linear Force Motor for Hydraulic Valve (밸브구동용 보이스 코일 선형 포스모터 설계와 해석 연구)

  • Park, C.S.;Huh, J.Y.
    • Journal of Drive and Control
    • /
    • v.9 no.4
    • /
    • pp.1-7
    • /
    • 2012
  • The voice coil linear force motor is a kind of a direct drive motion device that uses a permanent magnetic field and coil winding to produce force. In order to design a voice coil linear force motor, an exact calculations of the required force, the flux density in air gap and the flux pathway are needed. A conventional method can be used usually to calculate the flux density in air gap, but with this method it is needed to find a magnetic circuit revision constant. In this paper a voice coil linear force motor is designed by conventional design method and analyzed by 3D simulation program "Flux". For the prototype linear force motor, the results of the calculated by conventional design method and the analyzed by 3D simulation program are compared with the test result. Finally it is showed that the magnetic circuit revision constant which is found by comparing of the analyzed and the measured data can be used for the design of the voice coil type linear force motor to minimize the trial and error.

A study on the current limiting characteristics and magnetic analysis of the non-inductively wound coil (타입에 따른 무유도 권선형 코일의 한류 특성연구 및 자장해석)

  • Jang, Jae-Young;Park, Dong-Keun;Chang, Ki-Sung;Na, Jin-Bae;Kim, Won-Cheol;Chung, Yood-Do;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.1
    • /
    • pp.25-29
    • /
    • 2009
  • To reduce the power loss in normal state, non-inductively wound high temperature superconducting (HTS) coils are used for fault current limiter (FCL) application. Non-inductively wound coils can be classified into two types: solenoid type and pancake type. These two types have different electrical and thermal and mechanical characteristics due to their winding structure difference. This paper deals with the current limiting characteristics, magnetic field analysis of the two coils. Simulation using finite element method (FEM) was used to analyze the magnetic field distribution and inductance of the coils. Short circuit test using stabilizer-free coated conductor (CC) was also carried out. We can compare the characteristics of the two types of coil by using the data obtained from simulation and short circuit test. We confirmed the feasibility of FCL application by the analysis about the characteristics of non-inductively wound coil using CC.

A Study on Characteristics and Modeling of CMV by Grounding Methods of Transformer for ESS (ESS용 변압기의 접지방식에 의한 CMV 모델링 및 특성에 관한 연구)

  • Choi, Sung-Moon;Kim, Seung-Ho;Kim, Mi-Young;Rho, Dae-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.4
    • /
    • pp.587-593
    • /
    • 2021
  • Since 2017, a total of 29 fire accidents have occurred in energy storage systems (ESSs) as of June 2020. The common mode voltage (CMV) is one of the electrical hazards that is assumed to be a cause of those fire accidents. Several cases of CMV that violate the allowable insulation level of a battery section are being reported in actual ESS operation sites with △-Y winding connections. Thus, this paper evaluates the characteristics of CMV. An ESS site was modeled with an AC grid, PCS, and battery sections using PSCAD/EMTDC software. As a result of a simulation based on the proposed model, it was confirmed that characteristics of CMV vary significantly and are similar to actual measurements, depending on the grounding method of the internal transformer for PCS. The insulation level of the battery section may be severely degraded as the value of CMV exceeds the rated voltage in case of a grounding connection. It was found that the value of CMV dramatically declines when the internal transformer for PCS is operated as non-grounding connection, so it meets the standard insulation level.

회전기 고정자권선의 부분방전 진단용 평면 패치센서의 설계 및 실험

  • Yang, Sang-Hyeon;Park, No-Jun;Kim, Chung-Sik;Park, Dae-Hui
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.228-228
    • /
    • 2009
  • In stator windings of a 6.6kV rotating machine, internal discharge, corona discharge, and surface discharge are mainly caused by internal voids and insulation degradation. In the case of the discharge spark and electromagnetic pulse generated from a discharge source, we can detect it using various RF resonators like an EM sensor. In order to detect these types of electromagnetic sources, we designed and fabricated a planar patch sensor using a CST-MWS simulation, and PD signals from artificial defected stator windings were also measured by the sensor proposed in this study. Furthermore, In the results of the experiment, it showed similar performance to the HFCT sensor.

  • PDF

Operation of Brushless DC Motor using the Adaptive hysteresis bandwidth control algorithm (적응 Hysteresis band폭 제어 알고리즘을 이용한 Brushless DC Motor의 운전)

  • Cho, Kye-Seok;Kim, Kwang-Yeon;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.171-174
    • /
    • 1991
  • Among the various PWM methods, the hysteresis-band current control PWM method is popularly used because of its simplicity of implementation, fast response characteristics and inherent peak current limiting capability. However, the current control PWM method with a fixed hysteresis-band has the disadvantage that switching frequency decreases and current ripple is high as the increasing of back-EMF. As a result, load current contains excess harmonics. This paper describes a adaptive hysteresis-bandwidth control algorithm so as to maintain the average switching frequency constant and decrease the current ripple where the hysteresis bandwidth is derived as a relation with the switching frequency. This control algorithm is applied to the surface-type brushless DC motor with separated winding and using the computer simulation, the validity of its algorithm is proved.

  • PDF

Design of High Speed Drive (고속 SRM 구동시스템 설계)

  • Kim, Tae-Hyoung;An, Young-Joo;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.95-98
    • /
    • 2006
  • This paper proposes high speed SRM drive system for blower with a new 4-level inverter and precise excitation position generator. For the high speed blower, a proper inverter and control method are proposed and the output characteristics are analyzed. In order to get a fast build-up and demagnetization of excitation a current, 4-level inverter system is proposed. The proposed 4-level inverter has additional charge capacitor, power switch and diode in the conventional asymmetric converter. The charged high voltage is supplied to the phase winding for fast current build-up, and demagnetization current is charged to additional capacitor of 4-level inverter. In addition, a precise excitation position generator can reduce turn-on and turn-off angle error according to sampling period of digital control system. The proposed high speed SRM drive system is verified by computer simulation and experimental result.

  • PDF

Driving Characteristic of Passive Converter for Single Phase SRM (단상 SRM 구동을 위한 Passive Converter 동작특성)

  • Liang, Jianing;Seok, Seung-Hun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIEE Conference
    • /
    • 2008.04c
    • /
    • pp.113-115
    • /
    • 2008
  • At the high speed operation, the high demagnetization voltage can reduce the negative torque, so the output power and efficiency can be improved. In this paper, a novel power converter for single phase SRM with high demagnetization voltage is proposed. A simple passive capacitor circuit is added in the front-end, which consists of three diodes and one capacitor. Based on this passive network, the two capacitors can be connected in series and parallel, so the phase winding of SRM obtains general do-link voltage in excitation mode and the double dc-link voltage in demagnetization mode. The operation modes of the proposed converter are analyzed in detail. Some computer simulation results is done to verify the performance of proposed converter.

  • PDF