• Title/Summary/Keyword: Winding Tension

Search Result 80, Processing Time 0.026 seconds

Characteristics of the 0.7MJ $\mu$SMES Coil (0.7MJ $\mu$SMES 코일의 특성)

  • 김해종
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 1999.02a
    • /
    • pp.134-137
    • /
    • 1999
  • This paper describes the design, code of a $\mu$SMES device that we developed. The 0.7MJ $\mu$SMES coil was wound with high winding tension of about 14kbf/$mm^{2}$ in order to prevent wire motion from Lorentz force. This coil was charged up to a current of 1820A with a ramping rate of about 10A/s, where a quench occurred. This quench current is sbout 82% fo the coil critical current.

  • PDF

Transportation Current Test for 1 MVA HTS Transformer (1MVA 초전도 변압기 전류 통전 시험)

  • 박정호;송희석;김우석;김성훈;이동근;최경달
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.41-44
    • /
    • 2003
  • We manufactured double pancake type windings with BSCCO wire for 1MVA HTS transformer. To verify cracks of HTS wire and performance of manufactured windings, the transportation current was measured. In this paper, we present result of the transportation current test as a DC current and compare a drop of current performance of HTS wire due to tension and rounding during the manufacturing with technical data. We obtained good results and this will be useful for another manufacturing of HTS winding

  • PDF

A Study on the Optimum Evaluation Method for Tensile NOL Ring Specimen Manufactured by Filament Winding Process (Filament Winding에 의해 제조된 복합재료 NOL Ring시험편의 최적 인장강도 평가법에 관한 연구)

  • 김윤해;권술철;임철문
    • Composites Research
    • /
    • v.14 no.2
    • /
    • pp.8-12
    • /
    • 2001
  • Filament Winding Process is a comparatively simple operation in which continuous reinforcements in the form of roving are wound over a rotating mandrel. It is well established and versatile method for storage tanks and pipes for the chemical and other industries. In this study, tensile strength of a filament wound ring specimens were evaluated by a split disk test fixture and a dress disk test fixture. The results obtained from experiments were compared with the theoretical values from the rule of mixtures. The purpose of this paper is the suggestion of an appropriate test method for the evaluation of tensile properties of filament wound structures. The tensile strength of a ring specimen tested by the dress disk test showed better agreement with the theoretical values than those tested by the split disk test because of higher stress concentration in edges of a split disk test fixture. The results showed that the tensile strength of a ring specimen was influenced by the geometry of test fixture, the continuity of fibers, fiber-tension, fiber-end and stress concentration in specimen.

  • PDF

FSI(Fluid-Structure Interaction) Analysis for Harmonious Operation of High-Speed Printing Machine

  • Kim, Jin-Ho;Lee, Jae-Woo;Park, Soo-Hyung;Byun, Do-Young;Byun, Yung-Hwan;Lee, Chang-Jin
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.9 no.1
    • /
    • pp.137-146
    • /
    • 2008
  • Proper amount of entrained air and nip force should be also considered to minimize ballooning phenomenon since tight contact between a roller and web is required. In this paper, various web materials, PET(Polyester) and OPP(Oriented Poly Propylene) have been selected and investigated to satisfy high-speed printing requirement. Several web speeds, web tensions, and temperature conditions are imposed on each web materials and the pressure and gap profiles as well as nip force have been calculated. Increase of both the winding roller radius and the incoming wrap angle is considered under proper taper tension at 500 m/min of rewinding roller. By solving coupled Reynolds equation and web deflection equation simultaneously, the fluid-structure interaction process has been developed and is applied to the rewinding roller to investigate the ballooning phenomenon which causes guiding problems in high-speed printing performance conditions. By adjusting the linear taper tension, stress distribution between rewinding webs can be remarkably reduced and stable pressure and gap profile with ignorable ballooning phenomenon have been found.

Development of 22,000Ton Hydraulic Press for the Forming of Heat Plate with Ultra-Large Size (초대형 열교환기용 열판 성형을 위한 22,000Ton급 유압 프레스 개발)

  • Lim S. J.;Park H. J.;Yoon D. J.;Kim E. Z.;Lim H.;Na K. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2001.10a
    • /
    • pp.166-169
    • /
    • 2001
  • 22,000 Ton hydraulic press was developed using wire winding method. The hydraulic press consists of three piece of frame type. The outer layers of yoke-column frame and main cylinder linear were wound with piano wire(1mm${\times}$4mm) under controlled tension and the total length of wound wire was about 450Km. The developed hydraulic press is used for the forming of heat plate with ultra-large size. To obtain large force with relative small apparatus, high pressure of $1,500 Kgf/cm^2$ was supplied to main cylinder through pressure amplification by booster pump. Therefore sealing technique of main cylinder is so crucial that the seals were made of mitre ring type with super-elastic metal. The press total weight is about 150 tons, which is quite light and compact relative to that of conventional hydraulic press.

  • PDF

A study on the lateral Dynamics of the Moving Web Induced by a Tilted Roller (웹 표면 수직방향으로 기우러진 롤에 의한 측 방향 웹 거동에 대한 연구)

  • Shin, Kee-Hyun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.12
    • /
    • pp.209-216
    • /
    • 2000
  • The lateral behavior of the moving web is critical to the quality of the web products. The alignment of the rollers carrying the web is found to be one of important factors to the lateral behavior of the moving web. But, the study on the effect of the tilting roller in the direction of the normal to the moving web on the lateral behavior has not been reported in the literature yet. For example, the contact roller often contacts the winding roll in a tilted fashion and causes the lateral motion of the winding web, which induces the offset on the wound roll. The lateral dynamics of the moving web induced by a tilted roller in normal direction of a web is investigated in this paper. The two-dimensional dynamic model developed by Shelton is extended to investigate the effect of a titled roller in a normal direction of the moving web on the lateral motion of the moving web. New boundary conditions are developed to solve the extended model. Computer simulation study proved that the model developed can be used to predict the lateral motion of the moving web ? to a tilted roller in normal direction of the moving web. The lateral deflection is increased exponentially a the tilting angle is increased. As the length of web span is increased, the amount of lateral deflection was increased almost linearly for the same tilting angle. The lateral dynamics turned out to be almost independent to the operating tension. The model developed can be used to solve the offset problem of the staggered winding and also to design a new web guiding mechanism.

  • PDF

Residual Stress Comparison of Type III Hydrogen Tank by Curing Conditions (Type III 수소탱크 경화조건에 따른 잔류응력 비교)

  • Yong-Chul Shin
    • Composites Research
    • /
    • v.37 no.1
    • /
    • pp.15-20
    • /
    • 2024
  • Since the residual stress of hydrogen tank is directly related to durability, it is very important to reduce it for safety. Type II~IV hydrogen tank are manufactured by the filament winding method, in which the fiber is impregnated with resin and wound around the liner. Residual stress in composite is affected by curing conditions and fiber tension etc. In this study, the effect of curing conditions on residual stress was analyzed when manufacturing a Type III hydrogen tank using carbon fiber filament winding process. First, the curing behavior of the epoxy resin was analyzed using a differential scanning calorimetry. Through this, the curing temperature was set to 140℃. During the same curing time, the specimens were cured under 2-stage curing condition that reached 140℃ earlier and a 4-stage curing condition that reached 140℃ later, respectively. After curing, the residual stress of the composite material was measured by the ring slitting method, and the experimental values were compared with numerical values. It was confirmed that there was a significant difference in residual stress according to the optimization of curing conditions.

Failure Behavior of Pin-jointed Carbon/Epoxy Composites using Acoustic Emission (음향방출법을 이용한 탄소섬유/에폭시 복합재의 핀 체결부 파괴거동)

  • Kim, Chan-Gyu;Hwang, Young-Eun;Yoon, Sung-Ho
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.520-522
    • /
    • 2011
  • In this paper, the bearing strengths and fracture behaviors of the pin-jointed carbon fiber/epoxy composites were investigated through pin loading test. The composites were fabricated by a filament winding process, and two types of laminated patterns were considered. According to the results, type 1 pattern revealed a net-tension failure mode, whereas type 2 pattern exhibited a bearing failure mode. Also, acoustic emission energy of the type 2 pattern was higher than that of the type 1 pattern. Therefore, the type 2 pattern was found to be structurally safer than the type 1 pattern.

  • PDF

An Experimental Study on the Characteristics of Friction Between a Moving Web and a Roller (이송중인 웹과 롤러간의 마찰 특성에 관한 실험적 연구)

  • Kwon, Soon-O;Shin, Kee-Hyun;Hahn, Young-Ho;Kim, Hyo-Sub
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.5
    • /
    • pp.165-170
    • /
    • 2001
  • In the continuos process systems, traction between a moving web and rollers is one of key mechanisms for the study of major issues including the distributed control of tension, guiding, wrinkling, winding, and scratching. Energy is transferred from the driven rollers to the web and from the web to the idle rollers through traction. The characteristics of friction play major role in the determination of the traction force between the moving web and the rollers. In this paper the characteristics of friction between the moving web and the rollers are studied. A procedure to determine the friction coefficient between the moving web and rollers is developed. An experimental setup to validate the procedure is devised. Experimental results showed that the value of traction coefficient decreases as the operating web speed increases and increases as the operation web tension increase.

  • PDF

The Effect of Process Variables on Strip Width Spread and Prediction in Hot Finish Rolling (열간 사상압연에서 스트립 폭 퍼짐의 공정변수 영향 및 예측에 관한 연구)

  • Jeon, J.B.;Lee, K.H.;Han, J.G.;Jung, J.W.;Kim, H.J.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.4
    • /
    • pp.235-241
    • /
    • 2016
  • Dimensional accuracy of hot coil is improved by precise control of thickness profiles, flatness, width and winding profile. Especially, precise width control is important because yield could be increased significantly. Precise width control can be improved by predicting the amount of width spread. The purpose of this study is to develop the advanced prediction model for width spread in hot finish rolling for controlling width precisely. FE-simulations were performed to investigate the effect of process variables on width spread such as reduction ratio, forward and backward tension and initial width at each stand. From the statistical analysis of simulated data, advanced model was developed based on the existing models for strip width spread. The experimental hot rolling trials showed that newly developed model provided fairly accurate predictions on the strip width spread during the whole hot finishing rolling process.