• Title/Summary/Keyword: Winding Algorithm

Search Result 126, Processing Time 0.033 seconds

Estimation of the circulating currents in the parallel operation of transformers (변압기 병렬운전시 순환전류 추정)

  • Kang, Yong-Cheol;Lee, Mi-Sun;Lee, Byung-Eun;Jang, Sung-Il;Kim, Yong-Gyun;Joo, Haeng-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.23-24
    • /
    • 2008
  • For the $Y-Y-{\Delta}$ transformers operated in parallel, there exist two kinds of the circulating currents i.e. between the tanks and between the banks of the delta side. The proposed algorithm estimates the two circulating currents in the transformers in parallel in an ultra high voltage system. As the circulating current between the tanks is 90 deg out of phase of the load current, it is estimated by decomposing the line current into the component 90 deg out of phase of the load current. The circulating current between the banks in the delta side is estimated from the delta winding current and the line currents. The performance of the proposed algorithm is investigated when the impedances of the two transformer tanks are different or the taps of the on-load tap changer of the transformers are mismatched temporarily. Test results indicate that the algorithm can estimate the two kinds of the circulating currents successfully for both cases.

  • PDF

Application of reinforcement learning to hyper-redundant system Acquisition of locomotion pattern of snake like robot

  • Ito, K.;Matsuno, F.
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2001.01a
    • /
    • pp.65-70
    • /
    • 2001
  • We consider a hyper-redundant system that consists of many uniform units. The hyper-redundant system has many degrees of freedom and it can accomplish various tasks. Applysing the reinforcement learning to the hyper-redundant system is very attractive because it is possible to acquire various behaviors for various tasks automatically. In this paper we present a new reinforcement learning algorithm "Q-learning with propagation of motion". The algorithm is designed for the multi-agent systems that have strong connections. The proposed algorithm needs only one small Q-table even for a large scale system. So using the proposed algorithm, it is possible for the hyper-redundant system to learn the effective behavior. In this algorithm, only one leader agent learns the own behavior using its local information and the motion of the leader is propagated to another agents with time delay. The reward of the leader agent is given by using the whole system information. And the effective behavior of the leader is learned and the effective behavior of the system is acquired. We apply the proposed algorithm to a snake-like hyper-redundant robot. The necessary condition of the system to be Markov decision process is discussed. And the computer simulation of learning the locomotion is demonstrated. From the simulation results we find that the task of the locomotion of the robot to the desired point is learned and the winding motion is acquired. We can conclude that our proposed system and our analysis of the condition, that the system is Markov decision process, is valid.

  • PDF

Conceptional Design of HTS Magnets for 600 kJ Class SMES

  • Park Myung-Jin;Kwak Sang-Yeop;Kim Woo-Seok;Lee Seung-Wook;Lee Ji-Kwang;Choi Kyeong-Dal;Jung Hyun-Kyo;Seong Ki-Chul;Hahn Song-yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.4
    • /
    • pp.24-27
    • /
    • 2005
  • Development of a 600 kJ class Superconducting Magnetic Energy Storage (SMES) system is being in progress by Korea Electrotechnology Research Institute(KERI). High temperature superconducting (HTS) wires are going to be used for the windings for the SMES system is presented in this paper. We considered BSCCO-2223 wire for the HTS windings and the operating temperature of the winding was decided to be 20 K which will be accomplished by conduction cooling method using cyro-coolers. Auto-Tuning Niching Genetic Algorithm was adopted for an optimization method of the HTS magnets in the SMES system. The objective function of the optimal process was minimizing total amount of the HTS wire. As a result, we obtained output parameters for optimization design of 600 kJ class SMES under several constrained conditions. These HTS windings are going to be applied to the SMES system whose purpose is stabilization of the power grid.

Sensorless Control of High-Speed BLDC (고속 BLDC 전동기의 센서리스 제어)

  • Cho, Heung-Hyeon;Kim, Won-Bae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.3
    • /
    • pp.503-512
    • /
    • 2020
  • The products using blowers include hand dryers, automatic car washers, dryers, and vacuum cleaners. The features of these products require a structure and control algorithm so that a strong wind is blown out at the moment. Electric motors according to the existing excitation method include a direct winding type, a decentralized type, a lottery type, and a permanent magnet type. Conventional electric motors have a disadvantage when the starting current is large during high-speed rotation and the number of rotations is irregular. In order to improve this, research on high-speed BLDC motor control has designed 800W-class high-speed BLDC motor control and circuit through driving circuit design, sensorless control algorithm, simulation, experiment, etc., and more than 95% high efficiency evaluation method of driving performance of controller, prototype experiments and verification were studied.

Simple Initial Rotor Position Estimation for Stable Startup of IPMSM Sensorless Control (IPMSM 센서리스 제어의 안정된 기동을 위한 간단한 초기회전자 추정기법)

  • Kim, Gun-Myoung;Park, Byoung-Gun;Goo, Bon-Gwan;Kim, Rae-Young;Hyun, Dong-Seok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.602-609
    • /
    • 2011
  • This paper proposes a simple initial rotor position estimation method to obtain a stable startup performance for back EMF-based sensorless control. The proposed estimation method is achieved at standstill by using the current response to difference between each of the stator winding inductance. This initial rotor position estimation method can be easily implemented to control algorithm without any other external devices. The proposed algorithm is also not affected by motor parameter. The validity of the proposed method is demonstrated by experimental result.

Brushless DC Motor Electromagnetic Torque Estimation with Single-Phase Current Sensing

  • Cham, Chin-Long;Samad, Zahurin Bin
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.866-872
    • /
    • 2014
  • The purpose of this paper was to find an effective method for measuring electromagnetic torque produced by a brushless DC motor with single-phase current sensing in real-time. A torque equation is derived from the theory of brushless DC motor. This equation is then validated experimentally with a motor dynamometer. A computer algorithm is also proposed to implement the electromagnetic torque estimation equation in real-time. Electromagnetic torque is a linear function of phase current. Estimating the electromagnetic torque in real-time using single-phase current is not appropriate with existing equations, however, because of the rectangular alternating-pulse nature of the excitation current. With some mathematical manipulation to the existing equations, the equation derived in this paper overcame this limitation. The equation developed is simple and so it is computationally efficient, and it takes only motor torque constant and single-phase current to evaluate the electromagnetic torque; no other parameters such as winding resistances, inductances are needed. The equation derived is limited to the three-phase brushless DC motor. It can, however, easily be extended to the multiphase brushless DC motor with the technique described in this paper.

Three Phase Drive Transfer Algorithm for Fault Tolerance Control of Six-Phase PMSM (6상 영구자석 동기전동기의 고장대응운전을 위한 3상 구동시스템 전환 알고리즘)

  • Kim, Seong-Hoon;Jang, Won-Jin;Cho, Kwan-Yuhl;Kim, Hag-Wone
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.4
    • /
    • pp.256-262
    • /
    • 2021
  • Six-phase motors can be used in industrial applications, such as an electric vehicle, due to their high reliability and low current magnitude per phase. An asymmetrical PMSM with two sets of three-phase windings is a commonly used structure for six-phase motors, with each winding set demonstrating a phase difference of 30°. Although the asymmetrical PMSM presents low torque ripples, its dynamic torque response deteriorates due to coupled components in the two three-phase windings. The decoupled VSD control is applied to eliminate the coupling effect. Load ratio control of two inverters for the six-phase PMSM is proposed in this study. DQ currents are controlled on the basis of two synchronous reference frames, and the six-phase drive system can be changed to a three-phase drive system when one inverter presents fault conditions. The operation and effectiveness of the proposed algorithm is verified through simulation and experiments. The six-phase drive system is transferred to a three-phase drive system by changing the current reference of the second DQ reference frame. Moreover, control of both torque and speed exhibits satisfactory performance before and after the mode change.

Zero Torque Control of Switched Reluctance Motor for Integral Charging (충전기 겸용 스위치드 릴럭턴스 전동기의 제로토크제어)

  • Rashidi, A.;Namazi, M.M;Saghaian, S.M.;Lee, D.H.;Ahn, J.W.
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.2
    • /
    • pp.328-338
    • /
    • 2017
  • In this paper, a zero torque control scheme adopting current sharing function (CSF) used in integrated Switched Reluctance Motor (SRM) drive with DC battery charger is proposed. The proposed control scheme is able to achieve the keeping position (KP), zero torque (ZT) and power factor correction (PFC) at the same time with a simple novel current sharing function algorithm. The proposed CSF makes the proper reference for each phase windings of SRM to satisfy the total charging current of the battery with zero torque output to hold still position with power factor correction, and the copper loss minimization during of battery charging is also achieved during this process. Based on these, CSFs can be used without any recalculation of the optimal current at every sampling time. In this proposed integrated battery charger system, the cost effective, volume and weight reduction and power enlargement is realized by function multiplexing of the motor winding and asymmetric SR converter. By using the phase winding as large inductors for charging process, and taking the asymmetric SR converter as an interleaved converter with boost mode operation, the EV can be charged effectively and successfully with minimum integral system. In this integral system, there is a position sliding mode controller used to overcome any uncertainty such as mutual inductance or DC offset current sensor. Power factor correction and voltage adaption are obtained with three-phase buck type converter (or current source rectifier) that is cascaded with conventional SRM, one for wide input and output voltage range. The practicability is validated by the simulation and experimental results by using a laboratory 3-hp SRM setup based on TI TMS320F28335 platform.

Development of Fault-Simulated System for Induction Motors (유도전동기 고장모의 시뮬레이터 개발)

  • Hwang, Don-Ha;Lee, Ki-Chang;Kang, Dong-Sik;Kim, Byong-Kuk;Jo, Won-Young;Cho, Yun-Hyun
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.182-184
    • /
    • 2006
  • A down-scaled simulator is developed to simulate typical faults in induction motor such as short-turn stator winding, broken rotor bar, dynamic and static air-gap eccentricity, bearing trouble, and mechanical unbalance. The simulator is used as an initial builder to develop design algorithm for real-time faults detecting system by processing an abnormal signal and characteristics in each fault.

  • PDF

A Study on the Modeling and Control Method of PWM DC/DC Converter with Isolated two outputs

  • Jang Sang-Hyun;Yoo Ji-Yoon;Lee Dong-Yun;Choy Ick;Song Joong-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.291-294
    • /
    • 2001
  • This paper presents the circuit modeling and control methods of PWM DC/DC converter with isolated dual outputs. The dual output converter consists of a transformer with a single secondary winding and two switches. The proposed control algorithm is that required inductor current according to the loads is feed-forwarded to the PI current controller. The proposed control method has better response characteristics than conventional PI control method at load change.

  • PDF