• Title/Summary/Keyword: Wind-driven Current

Search Result 92, Processing Time 0.032 seconds

Numerical Analysis of Wind Driven Current and Mesoscale Air Flow in Coastal Region with Land Topography (육상지형을 고려한 연안해역에서의 취송류에 관한 수치해석)

  • Lee, Seong-Dae;Kim, In-Ho;Hong, Chang-Bae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1925-1930
    • /
    • 2006
  • A quasi depth-varying mathematical model for wind-generated circulation in coastal areas, expressed in terms of the depth-averaged horizontal velocity components and free surface elevation was validated and used to understand the diurnal circulation process. The wind velocity is considered as a dominant factor for driving the wind generated current. In this paper, three dimensional numerical experiments that included the land topography were used to investigate the mesoscale air flow over the coastal regions. The surface temperature of the inland was determined through the surface heat budget consideration with inclusion of a layer of vegetation. A series of numerical experiments were then carried out to investigate the diurnal response of the air flow and wind-generated circulation to various types of surface inhomogeneities.

  • PDF

Comparative Analysis of 10 MW Superconducting Wind Power Generators with Three-phase and Nine-phase Armature Windings

  • Kim, Taewon;Woo, Sang-Kyun;Sung, Hae-Jin
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.5 no.4
    • /
    • pp.343-347
    • /
    • 2019
  • When referring to weight, volume, and efficiency, a SuperConducting Synchronous Generator (SCSG) is definitely superior to conventional generators as a large-scale wind power generation system. The SCSG is connected to a full power converter that transmits the energy from the SCSG to the power grid. To reduce the current stress and system cost, the SCSG which has nine-phase armature windings with three converters is used. This paper deals with a comparative analysis of 10 MW superconducting wind power generators with three-phase and nine-phase armature windings. The stator windings of SCSGs are of various types. Using the finite element method, SCSGs are analyzed and compared in terms of the weight and volume of SCSGs, the total length of the superconducting wire, harmonics, torque performance, and efficiency. The analyzed results will be effectively utilized to design large-scale superconducting generators for wind power generation systems.

Self-excited Variability of the East Korea Warm Current: A Quasi-Geostyophic Model Study

  • Lee, Sang-Ki
    • Journal of the korean society of oceanography
    • /
    • v.34 no.1
    • /
    • pp.1-21
    • /
    • 1999
  • A two-layer quasi-geostrophic numerical model is used to investigate the temporal variability of the East Korea Warm Current (EKWC), especially the separation from the Korean coast and the generation of warm eddies. An attention is given on the active role of the nonlinear boundary layer process. For this, an idealized flat bottom model of the East Sea is forced with the annual mean wind curl and with the inflow-outflow specified at the Korea (Tsushima) and Tsugaru Straits. Two types of separation mechanisms are identified. The first one is influenced by the westward movement of the recirculating leg of the EKWC (externally driven separation),the second one is solely driven by the boundary layer dynamics (internally driven separation). However, these two processes are not independent, and usually coexist. It is hypothesized that 'internally driven separation' arises as the result of relative vorticity production at the wall, its subsequent advection via the EKWC, and its accumulation up to a critical level characterized by the separation of the boundary flow from the coast. It is found that the sharp southeastern corner of the Korean peninsula provides a favorable condition for the accumulation of relative vorticity. The separation of the EKWC usually accompanies the generation of a warm eddy with a diameter of about 120 km. The warm eddy has a typical layer-averaged velocity of 0.3 m/s and its lifespan is up to a year. In general, the characteristics of the simulated warm eddy are compatible with observations. A conclusion is therefore drawn that the variability of the EKWC is at least partially self-excited, not being influenced by any sources of perturbation in the forcing field, and that the likely source of the variability is the barotropic instability although the extent of contribution from the baroclinic instability remains unknown. The effects of the seasonal wind curl and inflow-outflow strength are also investigated.

  • PDF

SEASONAL AND SUBINERTIAL VARIATIONS IN THE SOYA WARM CURRENT REVEALED BY HF OCEAN RADARS, COASTAL TIDE GAUGES, AND A BOTTOM-MOUNTED ADCP

  • Ebuchi, Naoto;Fukamachi, Yasushi;Ohshima, Kay I.;Wakatsuchi, Masaaki
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.340-343
    • /
    • 2008
  • The Soya Warm Current (SWC) is a coastal boundary current, which flows along the coast of Hokkaido in the Sea of Okhotsk. Seasonal and subinertial variations in the SWC are investigated using data obtained by high-frequency (HF) ocean radars, coastal tide gauges, and a bottom-mounted acoustic Doppler current profiler (ADCP). The HF radars clearly capture the seasonal variations in the surface current fields of the SWC. The velocity of the SWC reaches its maximum, approximately 1 m/s, in the summer, and becomes weaker in the winter. The velocity core is located 20 to 30 km from the coast, and its width is approximately 50 km. The almost same seasonal cycle was repeated in the period from August 2003 to March 2007. In addition to the annual variation, the SWC exhibits subinertial variations with a period from 10-15 days. The surface transport by the SWC shows a significant correlation with the sea level difference between the Sea of Japan and Sea of Okhotsk for both of the seasonal and subinertial variations, indicating that the SWC is driven by the sea level difference between the two seas. Generation mechanism of the subinertial variation is discussed using wind data from the European Centre for Medium-range Weather Forecasts (ECMWF) analyses. The subinertial variations in the SWC are significantly correlated with the meridional wind component over the region. The subinertial variations in the sea level difference and surface current delay from the meridional wind variations for one or two days. Continental shelf waves triggered by the meridional wind on the east coast of Sakhalin and west coast of Hokkaido are considered to be a possible generation mechanism for the subinertial variations in the SWC.

  • PDF

New Control Scheme for the Wind-Driven Doubly Fed Induction Generator under Normal and Abnormal Grid Voltage Conditions

  • Ebrahim, Osama S.;Jain, Praveen K.;Nishith, Goel
    • Journal of Power Electronics
    • /
    • v.8 no.1
    • /
    • pp.10-22
    • /
    • 2008
  • The wind-driven doubly fed induction generator (DFIG) is currently under pressure to be more grid-compatible. The main concern is the fault ride-through (FRT) requirement to keep the generator connected to the grid during faults. In response to this, the paper introduces a novel model and new control scheme for the DFIG. The model provides a means of direct stator power control and considers the stator transients. On the basis of the derived model, a robust linear quadratic (LQ) controller is synthesized. The control law has proportional and integral actions and takes account of one sample delay in the input owing to the microprocessor's execution time. Further, the influence of the grid voltage imperfection is mitigated using frequency shaped cost functional method. Compensation of the rotor current pulsations is proposed to improve the FRT capability as well as the generator performance under grid voltage unbalance. As a consequence, the control system can achieve i) fast direct power control without instability risk, ii) alleviation of the problems associated with the DFIG operation under unbalanced grid voltage, and iii) high probability of successful grid FRT. The effectiveness of the proposed solution is confirmed through simulation studies on 2MW DFIG.

A Simple Model of the Formation of Thermo-haline Front in the Southeastern Yellow Sea in Winter

  • Seung, Young-Ho;Shin, Sang-Ik
    • Journal of the korean society of oceanography
    • /
    • v.31 no.1
    • /
    • pp.23-31
    • /
    • 1996
  • The thermo-haline front frequently observed near the southwestern tip of Korean Peninsula is successfully modeled using a simple model. The front is formed by the wind-driven advection of local cooled water to the southern warm area which is kept warm by large heat advection of the Tsushima Current. The front thus locates north of the Tsushima Current which runs approximately along the isobaths in the east-west direction.

  • PDF

Attenuation of High-Frequency Wave Energy Due to Opposing Currents

  • Suh, Kyung-Duck;Lee, Dong-Young-
    • Proceedings of the Korean Society of Coastal and Ocean Engineers Conference
    • /
    • 1993.07a
    • /
    • pp.20-25
    • /
    • 1993
  • In coastal waters, more often than not, waves propagate on currents driven by tidal forces, earth’s gravity, or wind. There have been a number of studies for dealing with the change of wave spectrum due to tile presence of current. Based on the conservation of wave action, Hedges et al. (1985) have proposed an equation which describes the influence of current on the change of wave spectrum in water of finite depth. (omitted)

  • PDF

Application of a Convolution Method for the Fast Prediction of Wind-Induced Surface Current in the Yellow Sea and the East China Sea (표층해류 신속예측을 위한 회선적분법의 적용)

  • 강관수;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.265-276
    • /
    • 1995
  • In this Paper, the Performance of the convolution method has been investigated as an effort to develop a simple system of predicting wind-driven surface current on a real time basis. In this approach wind stress is assumed to be spatially uniform and the effect of atmospheric pressure is neglected. The discrete convolution weights are determined in advance at each point using a linear three-dimensional Galerkin model with linear shape functions(Galerkin-FEM model). Four directions of wind stress(e.g. NE, SW, NW, SE) with unit magnitude are imposed in the model calculation for the construction of data base for convolution weights. Given the time history of wind stress, it is then possible to predict with-driven currents promptly using the convolution product of finite length. An unsteady wind stress of arbitrary form can be approximated by a series of wind pulses with magnitude of 6 hour averaged value. A total of 12 pulses are involved in the convolution product To examine the accuracy of the convolution method a series of numerical experiments has been carried out in the idealized basin representing the scale of the Yellow Sea and the East China Sea. The wind stress imposed varies sinusoidally in time. It was found that the predicted surface currents and elevation fields were in good agreement with the results computed by the direct integration of the Galerkin model. A model with grid 1/8$^{\circ}$ in latitude, l/6$^{\circ}$ in longitude was established which covers the entire region of the Yellow Sea and the East China Sea. The numerical prediction in terms of the convolution product has been carried out with particular attention on the formation of upwind flow in the middle of the Yellow Sea by northerly wind.

  • PDF

A Study of a Novel Wind Turbine Concept with Power Split Gearbox

  • Liu, Qian;Appunn, Rudiger;Hameyer, Kay
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.4
    • /
    • pp.478-485
    • /
    • 2013
  • This paper focuses on the design and control of a new concept for wind turbines with a planetary gearbox to realize a power split. This concept, where the generated wind power is split into two parts, is to increase the utilization of the wind power and may be particularly suitable for large scale off-shore wind turbines. In order to reduce the cost of the power electronic devices, a synchronous generator, which is driven by the planetary gear, is directly connected to the power grid without electronic converter. A servo drive, which functions as the control actuator, is connected to the power grid by a power electronic converter. With small scale power electronic device, the current harmonics can also be reduced. The speed of the main shaft is controlled to track the optimal tip speed ratio. Meanwhile the speed of the synchronous generator is controlled to stay at the synchronous speed. The minimum rated power of the servo motor and the converter, is studied and discussed in this paper. Different variants of the wind turbine with a planetary gear are also compared. The controller for optimal tip speed ratio and synchronous speed tracking is given.

Dynamically Induced Anomalies of the Japan/East Sea Surface Temperature

  • Trusenkova, Olga;Lobanov, Vyacheslav;Kaplunenko, Dmitry
    • Ocean and Polar Research
    • /
    • v.31 no.1
    • /
    • pp.11-29
    • /
    • 2009
  • Variability of sea surface temperature (SST) in the Japan/East Sea (JES) was studied using complex empirical orthogonal function (CEOF) analysis. Two daily data sets were analyzed: (1) New Generation 0.05o-gridded SST from Tohoku University, Japan (July 2002-July 2006), and (2) 0.25o-gridded SST from the Japan Meteorological Agency (October 1993-November 2006). Linkages with wind stress curl were revealed using 6-h 1o-gridded surface zonal and meridional winds from ancillary data of the Sea- WiFS Project, a special National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) product (1998-2005). SST anomalies (SSTA) were obtained by removing the seasonal signal, estimated as the leading mode of the CEOF decomposition of the original SST. Leading CEOF modes of residual SSTA obtained from both data sets were consistent with each other and were characterized by annual, semiannual, and quasi-biennial time scales estimated with 95% statistical significance. The Semiannual Mode lagged 2 months behind the increased occurrence of the anticyclonic (AC) wind stress curl over the JES. Links to dynamic processes were investigated by numerical simulations using an oceanic model. The suggested dynamic forcings of SSTA are the inflow of subtropical water into the JES through the Korea Strait, divergence in the surface layer induced by Ekman suction, meridional shifts of the Subarctic Front in the western JES, AC eddy formation, and wind-driven strengthening/weakening of large-scale currents. Events of west-east SSTA movement were identified in July-September. The SSTA moved from the northeastern JES towards the continental coast along the path of the westward branch of the Tsushima Current at a speed consistent with the advective scale.