• Title/Summary/Keyword: Wind velocity assessment

Search Result 53, Processing Time 0.026 seconds

Assessment of Low Velocity Impact Damage of Filament Wound Composite Vessels with Surface Protective Materials (필라멘트 와인딩 복합재 압력용기의 저속충격손상 평가에 관한 연구)

  • Lee, Jang-Ho;Kang, Ki-Weon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.8
    • /
    • pp.2741-2749
    • /
    • 2010
  • This paper presents the impact damage behavior of filament wound composite vessels and the effect of surface protective materials on their impact resistance. Using an instrumented impact testing machine, a series of impact tests was performed on the base panels and the protected panels (panels with surface protective materials of rubber, kevlar/epoxy or glass/epoxy laminates) that were cut from the full scale vessel. And the impact damage parameters were used to identify the effect of protective materials on the damage resistance of composite vessels. Damage resistance of the composite vessels was considerably affected by the protective materials regardless of the shape of the indenters. Among the protective materials, glass/epoxy laminates was the most effective mean for improving the damage resistance of composite vessels.

Evaluation of Irregular Disturbances to Ships in Autopilot Navigation (자동조타로써 항행하는 선박에 작용하는 불규칙 외란 추정법에 관한 고찰)

  • 이경우;손경호;김진형
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1995.04a
    • /
    • pp.65-92
    • /
    • 1995
  • The final aim of our research project is a study on assessment of automatic steering system of ships in open seas. In order to achieve this aim we need to know the characteristics of each component of the system and also to know the characteristics of disturbance to ship dynamcis. In this paper we provide calculation method of irregular disturbance to ships in autopilot navigation in open seas and also show calculation examples about two kinds of ship ore carrier and fishing boat. The disturbance consists of irregular wave and random wind, The disturbance is calculated as equivalent yaw angular velocity. Each spectrum and time history of disturbance are reasonably evaluated. Further investigation concerning to performance index of autopilot system and energy loss related to automatic course keeping will be dealt with in another paper,

  • PDF

A Comparative Study on the Risk(Individual and Societal) Assessment for Surrounding Areas of Chemical Processes (화학공정 주변지역에 미치는 위험성(사회적 위험성 및 개인적 위험성) 평가방법에 관한 비교 연구)

  • 김윤화;엄성인;고재욱
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.1
    • /
    • pp.56-63
    • /
    • 1995
  • Two methods of the numerical method of CPQRA(Chemical Process Quantitative Risk Analysis) and the manual method of IAEA(International Atomic Energy Agency) were used to estimate the individual risk and societal risk around the chemical plant. Where, the CPQRA is introduced to verify the theoritical background of the manual of international atomic energy agency. The Gaussian plume model which has a weather stability class D with velocity of 5m/s was applied to calculate dispersion of hazard material. Also, 8-point method was employed to the effects of accidents for wind distribution. Furthermore, historical record, FTA(Fault Tree Analysis) and ETA(Event Tree Analysis) were used to estimate the probability or frequency of accidents. Eventually, the individual risk shows isorisk contour and the societal risk shows F-N curve around hazard facility, especially in chemical plants. Caulculated results, which both individual and societal risk, by using IAEA manual show simillar results to those of calculation by numerical method of CPQRA.

  • PDF

Evaluation of Irregular Disturbances to Ships in Autopilot Navigation (자동조타로써 항행하는 선박에 작용하는 불규칙 외란 추정법에 관한 고찰)

  • 손경호;이경우;김진형
    • Journal of the Korean Institute of Navigation
    • /
    • v.19 no.2
    • /
    • pp.1-12
    • /
    • 1995
  • The final aim of our research project is a study on assessment of automatic steering system of ships in open seas. In order to achieve this aim, we need to know the characteristics of each component of the system, and also to know the characteristics of disturbance to ship dynamics. In this paper, we provide calculation method of irregular disturbance to ships in autopilot navigation in open seas, and also show calculation examples about two kinds of ship, ore carrier and fishing boat. The disturbance consists of irregular wave and random wind. The disturbance is calculated as equivalent yaw angular velocity. Each spectrum and time history of disturbance are reasonably evaluated. Further investigation concerning to performance index of autopilot system and energy loss related to automatic course keeping, will be dealt with in another paper.

  • PDF

Element Level System Identification Method without Input Data (미지의 입력자료를 이용한 요소수준의 구조물 손상도 추정기법)

  • Cho, Hyo-Nam;Choi, Young-Min;Moon, Chang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.04a
    • /
    • pp.89-96
    • /
    • 1997
  • Most civil engineering structures, such as highway bridges, towers, power plants and offshore structures suffer structural damages over their service lives caused by adverse loading such as heavy transportation loads, machine vibrations, earthquakes, wind and wave forces. Especially, if excessive load would be acted on the structure, general or partial stiffness should be degraded suddenly and service lives should be shortened eventually For realistic damage assessment of these civil structures, System Identification method using only structure dynamic response data with unknown input excitation is required and thus becoming more challenging problem. In this paper, an improved Iterative Least Squares method is proposed, which seems to be very efficient and robust method, because only the dynamic response data such as acceleration, velocity and displacement is used without input data, and no information on the modal properties is required. The efficiency and robustness of the proposed method is proved by numerical problems and real single span beam model test.

  • PDF

Analysis of the Climate inside Multi-span Plastic Greenhouses under Different Shade Strategies and Wind Regimes

  • He, Keshi;Chen, Dayue;Sun, Lijuan;Huang, Zhenyu;Liu, Zhenglu
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.473-483
    • /
    • 2014
  • In this work, the effects of shade combination, shade height and wind regime on greenhouse climate were quantified. A two-dimensional (2-D) computational fluid dynamics (CFD) model was developed based on an 11-span plastic greenhouse in eastern China for wind almost normal to the greenhouse orientation. The model was first validated with air temperature profiles measured in a compartmentalized greenhouse cultivated with mature lettuce (Lactuca sativa L., 'Yang Shan'). Next, the model was employed to investigate the effect of shade combinations on greenhouse microclimate patterns. Simulations showed similar airflow patterns in the greenhouse under different shade combinations. The temperature pattern was a consequence of convection and radiation transfer and was not significantly influenced by shade combination. The use of shade screens reduced air velocity by $0.02-0.20m{\cdot}s^{-1}$, lowered air temperature by $0.2-0.8^{\circ}C$ and raised the humidity level by 0.9-2.0% in the greenhouse. Moreover, it improved the interior climate homogeneity. The assessment of shade performance revealed that the external shade had good cooling and homogeneity performance and thus can be recommended. Furthermore, the effects of external shade height and wind regime on greenhouse climate parameters showed that external shade screens are suitable for installation within 1 m above roof level. They also demonstrated that, under external shade conditions, greenhouse temperature was reduced relative to unshaded conditions by $1.3^{\circ}C$ under a wind speed of $0.5m{\cdot}s^{-1}$, whereas it was reduced by merely $0.5^{\circ}C$ under a wind speed of $2.0m{\cdot}s^{-1}$. Therefore, external shading is more useful during periods of low wind speed.

Marine Environmental Characteristics around the Test Phase of Offshore Wind Farm in the Southwestern Coast of Yellow Sea (서남해 해상풍력 실증단지 해역의 해양 환경 특성)

  • Seo, Jinsung;Maeng, Junho;Lim, Eunpyo;Jin, Seungjoo;Kim, Hyunmin;Kim, Taeyun
    • Journal of Environmental Impact Assessment
    • /
    • v.28 no.5
    • /
    • pp.457-470
    • /
    • 2019
  • This study aims to present the characteristics of marine physics, water quality, and sediment quality around offshore wind farm near the Gochang and Buan sea areas through the analysis of monitoring data. The relationships between suspended solid and wave height as well as suspended solid and flow velocity were analyzed. We found that Correlation Coefficient values of 0.61~0.69 between wave height and suspended solid, and suspended solid concentration reaches 75 mg/L or higher when wave height of more than 1m occurred in the spring (1 month). The water quality index (WQI) was used to identify the status of the water quality in the study area. Most of the measured points were rated first grade (very good). The variation of chlorophyll-a was relatively hight compared to the other criteria, indicating that it is a major factor affecting the quality index. In the sediment column, all heavy metals were detected below the Threshold Effects Level(TEL), and ignition loss and grain size show a positive correlation.

Water quality big data analysis of the river basin with artificial intelligence ADV monitoring

  • Chen, ZY;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Membrane and Water Treatment
    • /
    • v.13 no.5
    • /
    • pp.219-225
    • /
    • 2022
  • 5th Assessment Report of the Intergovernmental Panel on Climate Change Weather (AR5) predicts that recent severe hydrological events will affect the quality of water and increase water pollution. To analyze changes in water quality due to future climate change, input data (precipitation, average temperature, relative humidity, average wind speed, and solar radiation) were compiled into a representative concentration curve (RC), defined using 8.5. AR5 and future use are calculated based on land use. Semi-distributed emission model Calculate emissions for each target period. Meteorological factors affecting water quality (precipitation, temperature, and flow) were input into a multiple linear regression (MLR) model and an artificial neural network (ANN) to analyze the data. Extensive experimental studies of flow properties have been carried out. In addition, an Acoustic Doppler Velocity (ADV) device was used to monitor the flow of a large open channel connection in a wastewater treatment plant in Ho Chi Minh City. Observations were made along different streams at different locations and at different depths. Analysis of measurement data shows average speed profile, aspect ratio, vertical position Measure, and ratio the vertical to bottom distance for maximum speed and water depth. This result indicates that the transport effect of the compound was considered when preparing the hazard analysis.

Risk Reduction Rate for Each Risk Mitigation Measure on High Pressure Urban Gas Pipelines Proposed by Quantitative Risk Analysis (정량적 위험성 평가를 통해 제안된 도시가스 고압배관의 위험경감조치별 위험감소효과)

  • Ryou, Young-Don;Jo, Young-Do;Park, Young-Gil;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.18-23
    • /
    • 2010
  • After conducting QRA(quantitative risk assessment) for the high pressure urban gas pipelines planned to be installed, RMMs(risk mitigation measures) when the societal risk is outside the acceptable region have been derived in this paper. Also risk reduction rates are calculated for each RMM. As a result of QRA, we find out that damaged distance caused by radiational heat is largely dependent upon the wind velocity and the atmospheric stability. The measure that has the highest risk reduction effect is No. 10 which includes pipeline corrosion monitoring, MOV(motor operated valve) installation and the method to protect pipeline damage caused by third-party mechanical interference, and which shows 75 % of risk reduction effect.

Mixing Analysis of Oil Spilled into the River by GPS-equipped Drifter Experiment and Numerical Modeling (GPS 부자 실험과 수치모델링에 의한 하천에 유입된 유류오염물질의 거동 해석)

  • Jang, Juhyoung;Jong, Jaehun;Mun, Hyunsaing;Kim, Kyunghyun;Seo, Ilwon
    • Journal of Korean Society on Water Environment
    • /
    • v.32 no.3
    • /
    • pp.243-252
    • /
    • 2016
  • In cases of water pollution accidents, accurate prediction for arrival time and concentration of contaminants in a river is essential to take proper measures and minimize their impact on downstream water intake facilities. It is critical to fully understand the behavior characteristics of contaminants on river surface, especially in case of oil spill accidents. Therefore, in this study, the effects of main parameters of advection and diffusion of contaminants were analyzed and validated by comparing the results of Lagrangian particle tracking (LPT) simulation of Environmental Fluid Dynamic Code (EFDC) model with those of Global Position System (GPS)-equipped drifter experiment. Prevention scenario modeling was accomplished by taking cases of movable weir operation into account. The simulated water level and flow velocity fluctuations agreed well with observations. There was no significant difference in the speed of surface particle movement between 5 and 10 layer modeling. Therefore, 5 layer modeling could be chosen to reduce computational time. It was found that full three dimensional modeling simulated wind effects on surface particle movements more sensitively than depth-averaged two dimensional modeling. The diffusion range of particles was linearly proportional to horizontal diffusivity by sensitivity analysis. Horizontal diffusivity estimated from the results of GPS-equipped drifter experiment was 0.096 m2/sec, which was considered to be valid for applying the LPT module in this area. Finally, the scenario analysis results showed that particle movements could be stagnant when discharge from the upstream weir was reduced, implying the possibility of securing time for mitigation actions such as oil boom installation and wiping oil contaminants. The outcomes of this study can help improve the prediction accuracy of particle tracking simulation to establish the most suitable mitigation plan considering the combination of movable weir operation.