• Title/Summary/Keyword: Wind variability

Search Result 175, Processing Time 0.028 seconds

Analysis on Wind Turbine Degradation of the Shinan Wind Power Plant (신안풍력발전소 풍력터빈의 성능저하 분석)

  • Kim, Hyun-Goo
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.46-50
    • /
    • 2013
  • This paper investigated wind turbine degradation quantitatively by analyzing the short-term operation records of the Shinan Wind Power Plant. Instead of a capacity factor which is needed to be normalized its variability due to monthly wind speed change, this study suggests an analysis method by taking the difference between the theoretical power output calculated from the nacelle wind speed and actual power output as the quantitative index of performance degradation. For three-year SCADA data analysis of the Shinan Wind Power Plant, it was confirmed that power output degradation rate of 0.54% per year. This value is within the average reduction rate 0.4%/year~0.9%/year of normalized capacity factor of the onshore wind power plants in U.K. and Denmark; however, lower than the rate 2%/year of Canadian wind power plants.

Eddy Kinetic Energy in the East Sea Estimated from Topex/Poseidon Altimeter Measurements

  • Cho Kwangwoo;Cho Kyu-Dae
    • Fisheries and Aquatic Sciences
    • /
    • v.5 no.3
    • /
    • pp.219-228
    • /
    • 2002
  • Based on the five-year (October 1992 through September 1997) Topex/Poseidon altimeter measurements, we describe the statistical characteristics of the eddy variability in the East Sea in terms of sea surface height anomaly, slope variability, and eddy kinetic energy (EKE). The sea surface height anomalies in the East Sea are produced with standard corrections from Topex/Poseidon measurements. In order to eliminate the high frequency noise in the sea surface height anomaly data, the alongtrack height anomaly data was filtered by about 40 km low-pass Lanczos filter based on Strub et al. (1997) and Kelly et a1. (1998). We find that there exists a distinct spatial contrast of high eddy variability in the south and low eddy energy in the north, bordering the Polar Front. In the northwestern area $(north\;of\;39^{\circ}N\;and\;west\;of\;133^{\circ}E)$ from the Polar Front where the eddies frequently appear, the EKE is also considerabel. The high kinetic energy in the southern East Sea reveals a close connection with the paths of the Tsushima Warm Current, suggesting that the high variability in the south is mainly generated by the baroclinic instability process of the Tsushima Warm Current. This finding is supported by other studies (Fu and Zlontnicki, 1989; Stammer, 1997) wh.ch have shown the strong eddy energy coupled in the major current system. The monthly variation of the EKE in both areas of high and low eddy variability shows a strong seasonality of a high eddy kinetic energy from October to February and a relatively low one from March to September. The sequential pattern of wind stress curl shows resemblance with those of monthly and seasonal EKE and the two sequences have a correlation of 0.82 and 0.67, respectively, providing an evidence that wind stress curl can be the possible forcing for the monthly and seasonal variation of the EKE in the East Sea. The seasonality of the EKE also seems to correlate with the seasonality of the Tsushima Warm Current. There also exists the large spatial and interannual variabilities in the EKE.

Allocation of Energy Storage Capacity for Large Wind Farms in Korea using Discrete Fourier Transform

  • Moon, Seung-pil;Labios, Remund;Chang, Byung-hoon;Kim, Soo-yeol;Yoon, Yong-beum
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.3
    • /
    • pp.377-382
    • /
    • 2016
  • In 2013, a total capacity of 591.3 MW of installed wind power generation was achieved in Korea, with a total of 1,139 MWh of wind energy generated that year. More wind power plants will be installed in the coming years, and it is important to develop methods to reduce the output variability of these resources so as to provide stable power to the power grid of Korea. In this regard, this paper proposes the use of energy storage system (ESS) as a means to stabilize the output variability of wind power plants. Presented in this paper is a method that uses Discrete Fourier Transform (DFT) to determine the ESS capacity needed to provide a stable power output for ancillary services such as frequency regulation, economic dispatch, and emergency reserves. In the first step of the proposed method, four regions (namely, Samdal, Yeongdeok, Yeongyang, and Gangwon) in Korea that had the most wind power generation capacity were selected for analysis. In the second step, the individual and aggregated wind power outputs of the selected regions in 2013 were obtained This information was then used in the third step, where DFT analysis of the power outputs was used to drive the magnitudes of the output variation. And finally, the ESS capacity requirements needed to provide different ancillary services were determined based on the magnitudes of the output variation.

The Characteristics of Radiation, Temperature and Wind Direction around King Sejong Station, Antarctica (남극 세종 기지 주변의 복사, 기온 및 풍향의 특징)

  • Choi, Tae-Jin;Lee, Bang-Yong;Kim, Seong-Joong;Park, Yoo-Min;Yoon, Young-Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.4
    • /
    • pp.397-408
    • /
    • 2006
  • Due to the temporal and spatial variability of the warming at and near the Antarctic Peninsular, it is required to better understand local climate at the issued region. The purpose of the study are to characterize surface radiation, air temperature and wind direction and investigate their relations at the King Sejong Station near the Antarctic Peninsular during last three and half years. While the study site was a weak radiative energy sink (positive net radiation) with annual mean of 15-20 Wm-2, it played a role as a strong sink in summer (December to January) with mean of 85 Wm-2, a magnitude that was significantly larger than those at other surface covered with snow or ice in Antarctica. Monthly averaged air temperature ranged from -7.7-2.8oC and the variations of monthly averaged air temperature showed the distinct differences with year. Northwesterly, westerly and easterly were dominant and the variability of air temperature could be explained by the variability of the frequency of wind direction with cold easterly and warm northwesterly/northerly to some degree, which in turn influenced radiation budget through albedo in summer.

  • PDF

Wind tunnel investigation on wind characteristics of flat and mountainous terrain

  • Li, Jiawu;Wang, Jun;Yang, Shucheng;Wang, Feng;Zhao, Guohui
    • Wind and Structures
    • /
    • v.35 no.4
    • /
    • pp.229-242
    • /
    • 2022
  • Wind tunnel test is often adopted to assess the site-specific wind characteristics for the design of bridges as suggested by current design standards. To investigate the wind characteristics of flat and mountainous terrain, two topographic models are tested in a boundary layer wind tunnel. The wind characteristics, including the vertical and horizontal mean wind speed distributions, the turbulence intensity, and the wind power spectra, are presented. They are investigated intensively in present study with the discussions on the effect of wind direction and the effect of topography. It is indicated that for flat terrain, the wind direction has negligible effect on the wind characteristics, however, the assumption of a homogenous wind field for the mountainous terrain is not applicable. Further, the non-homogeneous wind field can be defined based on a proposed approach if the wind tunnel test or on-site measurement is performed. The calculated turbulence intensities and wind power spectra by using the measured wind speeds are also given. It is shown that for the mountainous terrain, engineers should take into account the variability of the wind characteristics for design considerations.

A Short-Term Wind Speed Forecasting Through Support Vector Regression Regularized by Particle Swarm Optimization

  • Kim, Seong-Jun;Seo, In-Yong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.247-253
    • /
    • 2011
  • A sustainability of electricity supply has emerged as a critical issue for low carbon green growth in South Korea. Wind power is the fastest growing source of renewable energy. However, due to its own intermittency and volatility, the power supply generated from wind energy has variability in nature. Hence, accurate forecasting of wind speed and power plays a key role in the effective harvesting of wind energy and the integration of wind power into the current electric power grid. This paper presents a short-term wind speed prediction method based on support vector regression. Moreover, particle swarm optimization is adopted to find an optimum setting of hyper-parameters in support vector regression. An illustration is given by real-world data and the effect of model regularization by particle swarm optimization is discussed as well.

Optimizing Performance of Wind Turbines

  • Kusiak, Andrew
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.467-470
    • /
    • 2009
  • Variable loads along the drive-train are attributed to frequent failures of gears, bearings, and other components. Wind parameters cannot be controlled and therefore any turbine load-reducing remedies must be established based on proper insights into the wind-turbine interactions. A novel control concept to performance optimization of wind turbines is presented. This proposed concept is based on analysis of the turbine status reflected in the SCADA data. Modern computational techniques are used to optimize performance of a wind turbine from tree basic perspectives: drive-train, power output, and power quality. The proposed approach demonstrates that gains in the metrics representing the three perspectives and the corresponding control goals can be significantly improved for any wind turbine. The solution is applicable different turbine types operating in different wind regimes, e.g., winds of different speeds and variability. Simple and transparent parameters allow an operator to determine a balance between the operations and maintenance, technical, business objectives. The proposed modeling framework was embedded in software. The software tool has been tested on the data collected from 1.5 MW wind turbines.

  • PDF

Simulation of the Wind Power Generation System with Energy Storage System (전기저장 장치가 포함된 풍력발전 시스템에 대한 시뮬레이션)

  • Oh, Si-Doek;Lim, Hee-Sue;Seo, Seok-Ho;Kim, Ki-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • The wind power generation systems have a fluctuating or intermittent power output due to the variability of the wind speed. The amount of wind generation which can be connected to the grid without causing voltage stability problems is limited. In this study, the simulation of the wind power generation including energy storage system were performed to reduce the fluctuation of wind power output and to obtain the optimal operation planning of energy storage system.

  • PDF

Mixed Layer Variability in Northern Arabian Sea as Detected by an Argo Float

  • Bhaskar, T.V.S. Udaya;Swain, D.;Ravichandran, M.
    • Ocean Science Journal
    • /
    • v.42 no.4
    • /
    • pp.241-246
    • /
    • 2007
  • Northern Arabian Sea (NAS) between $17^{\circ}N-20.5^{\circ}N$ and $59^{\circ}E-69^{\circ}E$ was observed by using Argo float daily data fur about 9 months, from April 2002 through December 2002. Results showed that during April - May mixed layer shoaled due to light winds, clear sky and intense solar insolation. Sea surface temperature (SST) rose by $2.3^{\circ}C$ and ocean gained an average of 99.8 $Wm^{-2}$. Mixed layer reached maximum depth of about 71 m during June - September owing to strong winds and cloudy skies. Ocean gained abnormally low $\sim18Wm^{-2}$ and SST dropped by $3.4^{\circ}C$. During the inter monsoon period, October, mixed layer shoaled and maintained a depth of 20 to 30 m. November - December was accompanied by moderate winds, dropping of SST by $1.5^{\circ}C$ and ocean lost an average of 52.5 $Wm^{-2}$. Mixed layer deepened gradually reaching a maximum of 62 m in December. Analysis of surface fluxes and winds suggested that winds and fluxes are the dominating factors causing deepening of mixed layer during summer and winter monsoon periods respectively. Relatively big]h correlation between MLD, net heat flux and wind speed revealed that short term variability of MLD coincided well with short term variability of surface forcing.

CIRCUMSTELLAR PECULIARITIES IN INHOMOGENEOUS ENVELOPES OF THE YOUNG HERBIG AE/BE STARS

  • POGODIN MIKHAIL
    • Journal of The Korean Astronomical Society
    • /
    • v.29 no.spc1
    • /
    • pp.259-259
    • /
    • 1996
  • Circumstellar peculiarities of the young Herbig Ae/Be stars are analyzed using high-resolution CCD spectroscopic data, obtained in 1991-1996 at the ESO and the Crimean Astrophysical Observatory (about 450 spectrograms). The results of investigation of the rapid line variability in H$\alpha$, H$\beta$, HeI 5876 and DNaI lines are presented for AB Am, HD 163296, HD 36112, HD 100546, and HD 50138. We conclude that the behaviour of these lines can be explained in the framework of the model containing an equatorially concentrated and azimuthally inhomogeneous stellar wind, and an external cool shell that occasionally looses matter in form of infall onto the star.

  • PDF