• Title/Summary/Keyword: Wind turbine class

Search Result 147, Processing Time 0.026 seconds

Design of Mooring Lines of a Floating Offshore Wind Turbine in South Offshore Area of Jeju (제주 해양환경에 적합한 부유식 해상풍력발전기 계류선 설계)

  • Choung, Joonmo;Kim, Hyungjun;Jeon, Gi-Young
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.51 no.4
    • /
    • pp.300-310
    • /
    • 2014
  • This paper presents a mooring design procedure of a floating offshore wind turbine. The environment data of south offshore area of Jeju collected from Korea Hydrographic and Oceanographic Administration(KHOA) are used for hydrodynamic analyses as environmental conditions. We considered a semi-submersible type floating wind turbine based on Offshore Code Comparison Collaborative Continuation(OC4) DeepCWind platform and National Renewable Energy Laboratory(NREL) 5 MW class wind turbine. Catenary mooring with studless chain is chosen as the mooring system. Important design decisions such as how large the nomial sizes are, how long the mooring lines are, how far the anchor points are located, are demonstrated in detail. Considering ultimate limit state and fatigue limit state based on 100-year return period and 50-year design life, respectively, longterm predictions of breaking strength and fatigue are proposed.

Adaptive Sliding Mode Controller Design of Permanent Magnet Synchronous Generator for Variable-Speed Wind Turbine System (가변속 풍력 발전용 영구자석형 동기발전기의 적응 슬라이딩 모드 제어기 설계)

  • Kim, Seong-Soo;Choi, Han Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.5
    • /
    • pp.315-319
    • /
    • 2016
  • This paper proposes a simple adaptive sliding mode control algorithm for controlling a permanent magnet synchronous generator (PMSG) of a MW-class direct-driven wind turbine system. The proposed adaptive sliding mode controller does not require accurate knowledge of the PMSG parameter or turbine torque values. The proposed controller can accurately track the reference angular speed computed by the maximum power point tracking(MPPT) algorithm. Finally, this paper gives Matlab/Simulink simulation results to verify the practicality and effectiveness of the proposed adaptive sliding mode controller.

A Comparative Study on Aerodynamic Validation in Design Process of an Airfoil for Megawatt-Class Wind Turbine (메가와트 급 풍력터빈용 에어포일의 설계 단계에서의 공력성능 검증 기법 비교)

  • Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.11
    • /
    • pp.933-940
    • /
    • 2016
  • A comparative study between a wind tunnel test and an XFOIL simulation looking at the aerodynamic performance of the airfoil for MW-class wind turbine was conducted for validation in the design stage. Tests are carried out for 21% and 30% thickness-ratio airfoils developed for 5 ~ 10 MW offshore wind turbine and the results are compared with the output from the XFOIL simulation at Reynolds number $1.0{\times}10^7$. The test is performed at a free-stream velocity of 50 m/s, corresponding to a Reynolds number of $2.2{\times}10^6$ based on the chord. Surface roughness is simulated using a zig-zag tape. Discrepancies between the results of the test and the XFOIL analysis are found, however, meaningful data for surface pressure distribution, basic performance and surface roughness effect are obtained from the tests, while useful lift-to-drag ratio data is found by the XFOIL simulation.

Seismic Analysis for Multi-pile Concrete Foundation in 5MW Class Offshore Wind Turbine (5MW 해상풍력타워를 위한 콘크리트 지지구조물의 내진해석)

  • Kim, Woo Seok;Jeong, Yuseok;Kim, Kidu;Kim, Kyeong Jin;Lee, Jae Ha
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.29 no.3
    • /
    • pp.209-218
    • /
    • 2016
  • Recently, Wind-turbine electronic generator become popular. Wind-Turbine is free to cost for purchase and noise problem. For this reason, trend is shifting from Wind-turbine on land to offshore. Research and Development for offshore Wind-turbine has been conducted by various research institution. However, There is no solid design code for offshore Wind-turbine even in domestic as well as foreign. In this paper, conduct seismic analysis and compare results using design codes Korea Bridge Design Codes, Korea Harbor and Marina Design Codes, and DNV OS. Time-History analysis conducted for checking time dependent effect. The Added-Mass Method applied to consider water-structure effects and compared for w/ water and w/o water condition.

Investigation on Structural Design and Impact Damage for a Small Wind Turbine Blade (소형 풍력발전기 블레이드의 구조설계 및 충격손상 안전성 연구)

  • Kong, Changduk;Choi, Suhyun;Park, Hyunbum
    • Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.1-7
    • /
    • 2008
  • Recently the wind energy has been alternatively used as a renewable energy resource instead of the mostly used fossil fuel due to its lack and environmental issues. This work is to propose a structural design and analysis procedure for development of the low noise 100W class small wind turbine system which will be applicable to relatively low speed region like Korea and for the domestic use. Structural analysis including load cases, stress, deformation, buckling, vibration and fatigue life was performed using the Finite Element Method, the load spectrum analysis and the Miner rule. In order to evaluate the designed structure, the structural test was carried out and its test results were compared with the estimated results. In addition, the blade should be safe from the impact damage due to FOD(Foreign Object Damage) including the bird strike. In order to analize the bird strike penomena on the blade, MSC. Dytran was used, and the applied method Arbitrary Lagrangian-Eulerian was evalud by comparison with the previous study results.

  • PDF

Vibration Monitoring of a 1kW Small Wind Turbine Generator (1kW소형 풍력발전기의 진동 모니터링)

  • Kim, Seock-Hyun;Nam, Y.S.;Yoo, N.S.;Kim, Yun-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.308-311
    • /
    • 2006
  • A vibration monitoring is performed on a 1kW class stand alone wind turbine(W/T). When a W/T model is developed, general performance under various wind condition should be verified to introduce the product in the market. Especially, vibration characteristics within operating speed range are very important in the aspect of structural stability as well as generator's electrical efficiency. This paper examines the vibration performance of a home made 1kW W/T Various data of the W/T model are acquired in real time using a remote vibration monitoring system installed in Daekwanryung test site. Vibration stability of the W/T structure is diagnosed based upon the data and the result is used to estimate the applicability of the W/T model.

  • PDF

A Study on the modeling and operation control of a variable speed synchronous wind power system (가변속 동기형 풍력발전 시스템 모델링 및 운전제어에 대한 연구)

  • Huh, Hyun;Lee, Jaehak
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.8
    • /
    • pp.935-944
    • /
    • 2015
  • This study performs the dynamic modeling and the simulation of variable speed wind power system and implements the models of wind speed, wind turbine & PMSG, and MPPT & pitch control as well. The simulation of wind turbine was performed by using the power coefficient and other simulation parameters which were extracted with reference to the commercial 5MW class wind turbine data. As the result of this simulation, MPPT control is confirmed, maintaining the maximum power coefficient as far as the rated speed 12[m/s]. Over 12[m/s] wind speed, this wind power system makes it possible to keep the stable output by controlling the pitch angle.

INVESTIGATION ON OPTIMAL LOCATION OF SEPARATION PART FOR LARGE SCALE WIND TURBINE BLADE

  • Wooseong Jeong;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-3
    • /
    • 2024
  • Around the world, fossil fuel energy is being replaced with renewable energy due to environmental problems and sharp price increases. Many countries are making a change in the direction of moving toward eco-friendliness by reducing carbon emissions. Among renewable energies, the wind energy is eco-friendly because it produces electricity by wind power without carbon emissions, and it attracts attention worldwide as a great alternative to the exhausted fuel energy. To improve the efficiency of wind turbines, large and extra-large wind turbines have been developed all over the world by increasing install and diameter. These wind turbines have difficulty in transport after manufacture because of their size and height. Since the height of wind turbine blades is higher than the existing tunnel height, it is impossible to transport them. In this study, therefore, a 5 MW class large blade was separated for transport easiness as wind power generators became larger globally. Aerodynamic design and analysis was carried out for the blade. After performing structural design and analysis with the model designed, the stress concentration of the analyzed model and the various factors for consideration when separating were considered to conduct the study of selecting the optimal blade separation positions.

Development of High-speed Shaft Coupling for 6 MW Class Offshore Wind Turbine (6 MW급 해상풍력발전기용 고속축커플링 개발)

  • Park, Soo-Keun;Lee, Hyoung-Woo
    • Journal of Wind Energy
    • /
    • v.10 no.4
    • /
    • pp.20-27
    • /
    • 2019
  • High-speed shaft coupling in a wind power system transmits power and absorbs variations in length and spindle dislocation between the gearbox and generator. Furthermore, the coupling has an insulation function that prevents electrical corrosion caused by the flow of the generator's current into the gearbox and prevents overload resulting from sudden power failure from being transferred to the gearbox. Its design, functions, and part verification are described in the IEC61400 and GL Guidelines, which specify that the part must have a durability life of 20 years or longer under distance variation and axial misalignment between the gearbox and the generator. This study presents the design of a high-speed coupling through composite stiffness calculation, structural analysis, and comparative analysis of test and theory to identify the characteristics of high-speed coupling for a large-capacity 6 MW wind power generator. A prototype was fabricated by optimizing the manufacturing process for each part based on the design, and the reliability of the fabricated prototype was verified by evaluating the performance of the target quantitative evaluation items.

Development of class I surge protection device for the protection of offshore wind turbines from direct lightning (해상풍력발전기 직격뢰 보호용 1등급 바리스터 개발)

  • Geon Hui Lee;Jae Hyun Park;Kyung Jin Jung;Sung-Man Kang;Seung-Kyu Choi;Jeong Min Woo
    • Journal of Wind Energy
    • /
    • v.14 no.4
    • /
    • pp.50-56
    • /
    • 2023
  • With the abnormal weather phenomena caused by global warming, the frequency and intensity of lightning strikes are increasing, and lightning accidents are becoming one of the biggest causes of failures and accidents in offshore wind turbines. In order to secure generator operation reliability, effective and practical measures are needed to reduce lightning damage. Because offshore wind turbines are tall structures installed at sea, the possibility of direct lightning strikes is very high compared to other structures, and the role of surge protection devices to minimize damage to the electrical and electronic circuits inside the wind turbine is very important. In this study, a varistor, which is a key element for a class 1 surge protection device for direct lightning protection, was developed. The current density was improved by changing the varistor composition, and the distance between the electrode located on the varistor surface and the edge of the varistor was optimized through a simulation program to improve the fabrication process. Considering the combined effects of heat distribution, electric field distribution, and current density on the optimized varistor surface, silver electrodes were formed with a gap of 0.5 mm. The varistor developed in this study was confirmed to have an energy tolerance of 10/350 ㎲, 50kA, which is a representative direct lightning current waveform, and good protection characteristics with a limiting voltage of 2 kV or less.