• 제목/요약/키워드: Wind speed profile

검색결과 98건 처리시간 0.024초

해안림에 의한 풍속저감 효과의 수치적 모의 (Numerical Simulation of the Wind Speed Reduction by Coastal Forest Belts)

  • 임상준;이상호;김동엽;홍영주
    • 한국환경복원기술학회지
    • /
    • 제12권3호
    • /
    • pp.98-105
    • /
    • 2009
  • The objective of this study is to develop numerical simulation model for analysing the wind speed reduction effect by coastal forest belts. The horizontally homogeneous turbulent flow equations, which are derived from the Reynolds-averaged Navier-Stokes method, both above the tree canopy and within the canopy were first formulated, and a first-order closure scheme with the capability of accounting the bulk momentum transport term within the canopy was employed. The averaged equations were solved numerically by finite difference method, FTCS (forward time centered space) scheme. The proposed model was also used to numerically investigate the effects of structural characteristic of forest belt on the wind speed. The effects of maximum leaf area density were evaluated, with the leaf area density of $1.0m^2/m^3$, $2.0m^2/m^3$, $3.0m^2/m^3$, and $4.0m^2/m^3$. Vertical distributions of leaf area, both uniform and varied distribution with a height, were also considered. A comparison of wind profile indicated that there was in good agreements between simulated and measured wind speed. Also, the results showed horizontal wind speed decreased under a height of the tree with increasing maximum leaf area density. In conclusion, in applications where computational efficiency and simplicity are desirable, the proposed numerical model has of great capability to determine the vertical turbulent momentum transport and wind profile in the costal forest belt.

Adaptive Wavelet Neural Network Based Wind Speed Forecasting Studies

  • Chandra, D. Rakesh;Kumari, Matam Sailaja;Sydulu, Maheswarapu;Grimaccia, F.;Mussetta, M.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권6호
    • /
    • pp.1812-1821
    • /
    • 2014
  • Wind has been a rapidly growing renewable power source for the last twenty years. Since wind behavior is chaotic in nature, its forecasting is not easy. At the same time, developing an accurate forecasting method is essential when wind farms are integrated into the power grid. In fact, wind speed forecasting tools can solve issues related to grid stability and reserve allocation. In this paper 30 hours ahead wind speed profile forecast is proposed using Adaptive Wavelet Neural Network (AWNN). The implemented AWNN uses a Mexican hat mother Wavelet, and Morlet Mother Wavelet for seven, eight and nine levels decompositions. For wind speed forecasting, the time series data on wind speed has been gathered from the National Renewable Energy Laboratory (NREL) website. In this work, hourly averaged 10-min wind speed data sets for the year 2004 in the Midwest ISO region (site number 7263) is taken for analysis. Data sets are normalized in the range of [-1, 1] to improve the training performance of forecasting models. Total 8760 samples were taken for this forecasting analysis. After the forecasting phase, statistical parameters are calculated to evaluate system accuracy, comparing different configurations.

CFD 시뮬레이션을 이용한 풍하중 산정 시 변동풍속 프로파일에 관한 연구 (A Study on Fluctuating Wind Profile in CFD Simulation for Evaluating Wind Load)

  • 전두진;한상을
    • 한국공간구조학회논문집
    • /
    • 제21권1호
    • /
    • pp.51-59
    • /
    • 2021
  • In this paper, the effect of the turbulence intensity in across-wind direction on the wind load in CFD(Computational fluid dynamics) simulation was analyzed. 'Ansys fluent' software was used for CFD simulation. And the fluctuating wind speed applied to the simulation was generated according to Korean Design Standard and Von Karman wind turbulence model. The turbulence intensity in across-wind direction for simulation was applied from 0 to 100% of the turbulence intensity in along-wind direction. The analysis results showed that the turbulence intensity in across-wind direction had a particularly great effect on the wind load in across-wind direction.

Field monitoring of boundary layer wind characteristics in urban area

  • Li, Q.S.;Zhi, Lunhai;Hu, Fei
    • Wind and Structures
    • /
    • 제12권6호
    • /
    • pp.553-574
    • /
    • 2009
  • This paper presents statistical analysis results of wind speed and atmospheric turbulence data measured from more than 30 anemometers installed at 15 different height levels on 325 m high Beijing Meteorological Tower and is primarily intended to provide useful information on boundary layer wind characteristics for wind-resistant design of tall buildings and high-rise structures. Profiles of mean wind speed are presented based on the field measurements and are compared with empirical models' predictions. Relevant parameters of atmospheric boundary layer at urban terrain are determined from the measured wind speed profiles. Furthermore, wind velocity data in longitudinal, lateral and vertical directions, which were recorded from an ultrasonic anemometer during windstorms, are analyzed and discussed. Atmospheric turbulence information such as turbulence intensity, gust factor, turbulence integral length scale and power spectral densities of the three-dimensional fluctuating wind velocity are presented and used to evaluate the adequacy of existing theoretical and empirical models. The objective of this study is to investigate the profiles of mean wind speed and atmospheric turbulence characteristics over a typical urban area.

Potential wind power generation at Khon Kaen, Thailand

  • Supachai, Polnumtiang;Kiatfa, Tangchaichit
    • Wind and Structures
    • /
    • 제35권6호
    • /
    • pp.385-394
    • /
    • 2022
  • The energy demand of the world is increasing rapidly, mainly using fossil energy, which causes environmental damage. The wind is free and clean energy to solve the environmental problems. Thailand is one of the developing nations, and the majority of its energy is obtained from petroleum, natural gas and coal. The objective of this study is to test the characteristics of wind energy at Khon Kaen in Thailand. The wind measurement tools, the 3-cup anemometers to measure wind speed, and wind vanes to measure wind direction, were mounted on a wind tower mast to record wind data at the heights of 60, 90 and 120 meters above ground level (AGL) for 5 years between January 2012 and December 2016. The results show that the annual mean wind speeds were 3.79, 4.32 and 4.66 m/s, respectively. The highest mean wind speeds occurred in June, August and December, in order, and the lowest occurred in September. The majority of prevailing wind directions were from the North-East and South-West directions. The average annual wind shear coefficient was 0.297. Furthermore, five wind turbines with rated power from 0.85 to 4.5 MW were selected to estimate the wind energy output and it was found that the maximum AEP and CF were achieved from the low cut-in speed and high hub-height wind turbines. This important information will help to develop wind energy applications, such as the plan to produce electricity and the calculation of the wind load that affects tall and large structures.

Laboratory measurements of the drag coefficient over a fixed shoaling hurricane wave train

  • Zachry, Brian C.;Letchford, Chris W.;Zuo, Delong;Kennedy, Andrew B.
    • Wind and Structures
    • /
    • 제16권2호
    • /
    • pp.193-211
    • /
    • 2013
  • This paper presents results from a wind tunnel study that examined the drag coefficient and wind flow over an asymmetric wave train immersed in turbulent boundary layer flow. The modeled wavy surface consisted of eight replicas of a statistically-valid hurricane-generated wave, located near the coast in the shoaling wave region. For an aerodynamically rough model surface, the air flow remained attached and a pronounced speed-up region was evident over the wave crest. A wavelength-averaged drag coefficient was determined using the wind profile method, common to both field and laboratory settings. It was found that the drag coefficient was approximately 50% higher than values obtained in deep water hurricane conditions. This study suggests that nearshore wave drag is markedly higher than over deep water waves of similar size, and provides the groundwork for assessing the impact of nearshore wave conditions on storm surge modeling and coastal wind engineering.

Near-ground boundary layer wind characteristics analysis of Typhoon "Bailu" based on field measurements

  • Dandan Xia;Li Lin;Liming Dai;Xiaobo Lin
    • Wind and Structures
    • /
    • 제39권1호
    • /
    • pp.15-30
    • /
    • 2024
  • In this paper, detailed wind field data of the full path of typhoon "Bailu" were obtained based on site measurements. Typhoon "Bailu" made first landfall southeast of the Taiwan Strait with a wind speed of approximately 30 m/s near the center of the typhoon eye and a second landfall in Dongshang County in Fujian Province. The moving process is classified into 3 regions for analysis and comparison. Detailed analyses of wind characteristics including wind profile, turbulence intensity, gust factor, turbulence integral scale and wind power spectral density function at the full process of the typhoon are conducted, and the findings are presented in this paper. Wind speed shows significant dependence on both the direction of the moving path and the distance between the typhoon center and measurement site. Wind characteristics significantly vary with the moving path of the typhoon center. The relationship between turbulence intensity and gust factor at different regions is investigated. The integral turbulence scales and wind speed are fitted by a Gaussian model. Such analysis and conclusions may provide guidance for future bridge wind-resistant design in engineering applications.

수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무 (Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect)

  • 김진;강승희;유기완
    • 한국항공우주학회지
    • /
    • 제44권5호
    • /
    • pp.399-406
    • /
    • 2016
  • 대형 풍력터빈은 지상 전단 흐름 내에서 회전하면서 주기적인 유입속도의 변동 조건 하에 운용된다. 수직 전단흐름에 의해서 경계층 내의 유입 속도는 최고점에서 속도가 최대가 되고 최저점에서 속도가 최소가 된다. 이러한 공간적인 풍속 분포는 풍력터빈 로터의 허브와 저속회전축에서 6분력 하중에 대한 주기적인 진동을 야기한다. 본 연구에서는 수직 전단 흐름 효과를 무시한 균일 흐름장과 지상 전단 흐름효과를 고려한 두 가지 경우에 대한 공력 하중을 비교분석하였다. 계산 결과로부터 허브에서의 추력과 굽힘모멘트, LSS의 굽힘모멘트가 크게 변동하는 결과를 보여주었다. 따라서 지상 전단흐름 효과를 반영한 공력 해석이 피로 해석을 위해서 반드시 필요함을 확인하였다.

Near-ground wind and its characterization for engineering applications

  • Crandell, Jay H.;Farkas, William;Lyons, James M.;Freeborne, William
    • Wind and Structures
    • /
    • 제3권3호
    • /
    • pp.143-158
    • /
    • 2000
  • This report presents the findings of a one-year monitoring effort to empirically characterize and evaluate the nature of near-ground winds for structural engineering purposes. The current wind engineering practice in the United States does not explicitly consider certain important near-ground wind characteristics in typical rough terrain conditions and the possible effect on efficient design of low-rise structures, such as homes and other light-frame buildings that comprise most of the building population. Therefore, near ground wind data was collected for the purpose of comparing actual near-ground wind characteristics to the current U.S. wind engineering practice. The study provides data depicting variability of wind speeds, wind velocity profiles for a major thunderstorm event and a northeaster, and the influence of thunderstorms on annual extreme wind speeds at various heights above ground in a typical rough environment. Data showing the decrease in the power law exponent with increasing wind speed is also presented. It is demonstrated that near-ground wind speeds (i.e., less than 10 m above ground) are likely to be over-estimated in the current design practice by as much as 20 percent which may result in wind load over-estimate of about 50% for low-rise buildings in typical rough terrain. The importance of thunderstorm wind profiles on determination of design wind speeds and building loads (particularly for buildings substantially taller than 10 m) is also discussed. Recommendations are given for possible improvements to the current design practice in the United States with respect to low-rise buildings in rough terrain and for the need to study the impact of thunderstorm gust profile shapes on extreme value wind speed estimates and building loads.

HeMOSU-1호 관측 자료를 이용한 해상풍속 산정오차 분석 (Error analysis on the Offshore Wind Speed Estimation using HeMOSU-1 Data)

  • 고동휘;정신택;조홍연;김지영;강금석
    • 한국해안·해양공학회논문집
    • /
    • 제24권5호
    • /
    • pp.326-332
    • /
    • 2012
  • 본 연구에서는 해상풍력발전 후보지인 영광해상에 설치한 해상 기상타워 해모수 1호(HeMOSU-1)의 2011년 연간 풍속 관측 자료와 기상타워 해모수 1호 설치 지점에 인접한 부안, 고창, 영광 3개 지점의 육상 풍속자료를 이용하여 해상 임의고도에서의 풍속 산정 과정에서 발생하는 오차에 대한 분석을 수행하였다. 먼저 육상 풍속자료와 해상 풍속자료의 선형회귀분석으로 유도된 관계식을 이용하여 해상 기준고도(평균해수면 98.69 m)의 해상풍속자료를 추정하였다. 그리고, 추정된 해상풍속 자료는 관측자료를 통해 산출된 고도분포지수 값(${\simeq}0.115$)과 멱법칙 풍속프로파일을 이용하여 87.65 m 높이로 고도보정하여 관측치와 비교하였다. 연구 수행결과, 공간보정오차는 1.6~2.2 m/s 정도이며, 고도보정오차는 0.1 m/s 정도로 공간보정오차의 약 5% 정도에 불과한 것으로 파악되었다. 육상자료를 환산하여 해상임의지점의 풍속을 추정하는 경우, 큰 오차가 발생하기 때문에 장기간의 해상자료를 확보하거나 정확도가 높은 모델링 자료를 이용하여야 할 것으로 판단된다.