• 제목/요약/키워드: Wind separation

검색결과 238건 처리시간 0.021초

풍력 블레이드 분리를 위한 연구 동향 분석 (Investigation on Research Trends for Separation of Wind Turbine Blade)

  • 정우성;박현범
    • 풍력에너지저널
    • /
    • 제14권4호
    • /
    • pp.68-74
    • /
    • 2023
  • Research is being actively conducted to increase energy production by increasing the length of wind turbine blades. However, it is difficult to manufacture and transport large-scale blades. Various studies are being conducted on the concept of separate wind turbine blades considering transportation methods and maintenance. In this study, various methods of dividing blades and assembling the divided blades were reviewed. The position of the division when the blades are divided was analyzed.

Store Separation Analysis of a Fighter Aircraft's External Fuel Tank

  • Cho, Hwan-Kee;Kang, Chi-Hang;Jang, Young-Il;Lee, Sang-Hyun;Kim, Kwang-Yeon
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제11권4호
    • /
    • pp.345-350
    • /
    • 2010
  • The repetitive vibrating action of an aerodynamic load causes an external fuel tank's horizontal fin to experience a shorter life cycle than its originally predicted one. Store separation analysis is needed to redesign the fin of an external fuel tank. In this research, free-drop tests were conducted using 15% scaled models in a subsonic wind tunnel in order to analyze the store separation characteristics of an external fuel tank. The store separation trajectory based on grid tests was also obtained to verify the results of the free-drop tests. The results acquired from the free-drop tests correlated well with the grid tests in regards to the trajectories and behavior of the stores separated from the aircraft. This agreement was especially noted in the early stages of the store separation.

새만금 방조제에 의한 풍력터빈 입사풍 변화의 전산유동해석 (Computational Flow Analysis on Wind Profile Change Projected to a Wind Turbine Behind Saemangeum Seawall)

  • 우상우;김현구
    • 신재생에너지
    • /
    • 제9권1호
    • /
    • pp.6-11
    • /
    • 2013
  • Jeollabuk-do has announced a future plan for the Saemangeum Wind Farm which includes the installation of fourteen wind turbines in a single line, located 500m back from the Saemangeum Seawall. It is anticipated as a positive effect that, for sea breeze blowing toward land, the average wind speed could be accelerated and the wind speed distribution could be uniformized by dint of the seawall, an upstream structure of the turbines. At the same time it is also anticipated as a negative effect that the strength of wind turbulence could be increased due to the flow separation generated at the back end of the seawall. According to the results of the computational fluid dynamics analysis of this paper, it has been observed that, at the 50m zone on the road surface located at the uppermost part of the Saemangeum Seawall, the average wind speed has been accelerated by approximately 6~7% and that wind shear has been decreased by 70%, but this positive effect disappears in the zone situated beyond the 100m from the back end of the seawall. It has also been observed that flow separation exists to a limited extent only below the bottom of the blade-sweeping circle and, furthermore, does not extend very far downstream of the wind. As a conclusion, it can be said that the seawall neither positively nor negatively affects the proposed Saemangeum Seawall Wind Farm layout.

방파제에 의한 풍속할증이 풍력터빈에 미치는 영향 (Effect of Wind Speed up by Seawall on a Wind Turbine)

  • 하영철;이봉희;김현구
    • 한국태양에너지학회 논문집
    • /
    • 제33권3호
    • /
    • pp.1-8
    • /
    • 2013
  • In order to identify positive or negative effect of seawall on wind turbine, a wind tunnel experiment has been conducted with a 1/100 scaled-down model of Goonsan wind farm which is located in West coast along seawall. Wind speedup due to the slope of seawall contributed to about 3% increment of area-averaged wind speed on rotor-plane of a wind turbine which is anticipated to augment wind power generation. From the turbulence measurement and flow visualization, it was confirmed that there would be no negative effect due to flow separation because its influence is confined below wind turbine blades' sweeping height.

Effects of inflow turbulence and slope on turbulent boundary layer over two-dimensional hills

  • Wang, Tong;Cao, Shuyang;Ge, Yaojun
    • Wind and Structures
    • /
    • 제19권2호
    • /
    • pp.219-232
    • /
    • 2014
  • The characteristics of turbulent boundary layers over hilly terrain depend strongly on the hill slope and upstream condition, especially inflow turbulence. Numerical simulations are carried out to investigate the neutrally stratified turbulent boundary layer over two-dimensional hills. Two kinds of hill shape, a steep one with stable separation and a low one without stable separation, two kinds of inflow condition, laminar turbulent, are considered. An auxiliary simulation, based on the local differential quadrature method and recycling technique, is performed to simulate the inflow turbulence be imposed at inlet boundary of the turbulent inflow, which preserves very well in the computational domain. A large separation bubble is established on the leeside of the steep hill with laminar inflow, while reattachment point moves upstream under turbulent inflow condition. There is stable separation on the side of low hill with laminar inflow, whilw not turbulent inflow. Besides increase of turbulence intensity, inflow can efficiently enhance the speedup around hills. So in practice, it is unreasonable to study wind flow over hilly terrain without considering inflow turbulence.

수평축 풍력발전용 터빈의 유동 해석을 위한 상용 CFD 코드의 적용성 평가에 관한 연구 (A Study on the Evaluation for the Application of a Comn CFD Code to Flow Analysis of a HAWTs)

  • 김범석;김정환;남청도;이영호
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2002년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.396-401
    • /
    • 2002
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow characteristics of wind turbine. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing disproportionally with the size of the wind turbines, and is hence mostly limited to observing the phenomena. Hence, the use of Computational Fluid Dynamics (CFD) techniques and Wavier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations presented in this paper. The 3-D flow separation and the wake distribution of 2 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and visualized result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good agree with visualized results.

  • PDF

Separation of background and resonant components of wind-induced response for flexible structures

  • Li, Jing;Li, Lijuan;Wang, Xin
    • Structural Engineering and Mechanics
    • /
    • 제53권3호
    • /
    • pp.607-623
    • /
    • 2015
  • The wind-induced dynamic response of large-span flexible structures includes two important components-background response and resonant response. However, it is difficult to separate the two components in time-domain. To solve the problem, a relational expression of wavelet packet coefficients and power spectrum is derived based on the principles of digital signal processing and the theories of wavelet packet analysis. Further, a new approach is proposed for separation of the background response from the resonant response. Then a numerical example of frequency detection is provided to test the accuracy and the spectral resolution of the proposed approach. In the engineering example, the approach is applied to compute the power spectra of the wind-induced response of a large-span roof structure, and the accuracy of spectral estimation for stochastic signals is verified. The numerical results indicate that the proposed approach is efficient and accurate with high spectral resolution, so it is applicable for power spectral computation of various response signals of structures induced by the wind. Moreover, the background and the resonant response time histories are separated successfully using the proposed approach, which is sufficiently proved by detailed verifications. Therefore, the proposed approach is a powerful tool for the verification of the existing frequency-domain formulations.

회전과 유동박리효과를 고려한 3차원 풍력발전 터빈 블레이드의 공탄성 응답 해석 (Aeroelastic Response Analysis of 3D Wind Turbine Blade Considering Rotating and Flow Separation Effects)

  • 김동현;김요한;김동만;김유성;황미현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.68-75
    • /
    • 2009
  • In this study, aeroelastic response analyses have been conducted for a 3D wind turbine blade model. Advanced computational analysis system based on computational fluid dynamics(CFD) and computational structural dynamics(CSD) has been developed in order to investigate detailed dynamic responsed of wind turbine blade. Vibration analyses of rotating wind-turbine blade have been conducted using the general nonlinear finite element program, SAMCEF (Ver.6.3). Reynolds-averaged Navier-Stokes (RANS)equations with spalart-allmaras turbulence model are solved for unsteady flow problems of the rotating turbine blade model. A fully implicit time marching scheme based on the Newmark direct integration method is used for computing the coupled aeroelastic governing equations of the 3D turbine blade for fluid-structure interaction (FSI) problems. Detailed dynamic responses and instantaneous Mach contour on the blade surfaces considering flow-separation effects are presented to show the multi-physical phenomenon of the rotating wind-turbine blade model.

  • PDF

수평축 풍력발전용 터빈의 유동해석 및 성능예측에 대한 CFD의 적용성 평가에 관한 연구 (A Study on Evaluation for the Applicatioin of a CFD Code to Flow Analysis and an Estimate of Performance for HAWT)

  • 김범석;김정환;김유택;남청도;이영호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.2192-2197
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore, the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TV-Delft. The CFD results of which is somewhat consist with BEM results, under an error less than 10%.

  • PDF

CFD에 의한 수평축 풍력발전용 터빈의 유동해석 및 성능예측에 관한 연구 (A Study on Flow Analysis and an Estimate of performance for HAWT by CFD)

  • 김정환;김범석;김진구;남청도;이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권7호
    • /
    • pp.906-913
    • /
    • 2003
  • The purpose of this 3-D numerical simulation is to evaluate the application of a commercial CFD code to predict 3-D flow and power characteristics of wind turbines. The experimental approach, which has been main method of investigation, appears to be its limits, the cost increasing with the size of the wind turbines, hence mostly limited to observing the phenomena on rotor blades. Therefore. the use of Computational Fluid Dynamics (CFD) techniques and Navier-Stokes solvers are considered a very serious contender. The flow solver CFX-TASCflow is employed in all computations in this paper. The 3-D flow separation and the wake distribution of 2 and 3 bladed Horizontal Axis Wind Turbines (HAWTs) are compared to Heuristic model and smoke-visualized experimental result by NREL(National Renewable Energy Laboratory). Simulated 3-D flow separation structure on the rotor blade is very similar to Heuristic model and the wake structure of the wind turbine is good consistent with smoke-visualized result. The calculated power of the 3 bladed rotor by CFD is compared with BEM results by TU-Delft. The CFD results of which is somewhat consist with BEM results. under an error less than 10%.