• Title/Summary/Keyword: Wind sensor

Search Result 270, Processing Time 0.025 seconds

Evaluation of Power Performance by Anemometer on WTGS (풍력발전기 너셀에 장착된 풍속계를 이용한 출력성능 평가)

  • Kim, Soo-Sang;Park, Se-Kwang
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.4
    • /
    • pp.303-310
    • /
    • 2012
  • We carried out the power performance evaluation for 1.5 MW${\times}$2 by using anemometer installed on WTGS(Wind Turbine Generator System) in the wind farm at Shi-hwa bang-a-mu-ri. In this paper, we compared and analyzed the performance of guaranteed output and measured output of WTGS which includes output curve, output coefficient, AEP(Annual Energy Product) and availability, etc.. The power performance of WTGS was optimized in the low wind speed sections(3 m/s ~ 10 m/s) and the measured output was more produced by AEP 109 % and availability 112 % than the guaranteed output. In addition, we could also cut the high cost of testing WTGS performance by using anemometer as a substitute for weather mast.

Corrosion Monitoring for Offshore Wind Farm's Substructures by using Electrochemical Noise Sensors

  • Soh, Joon-Young;Lee, Min-Woo;Kim, Su-Kyung;Kim, Do Hyung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.2 no.4
    • /
    • pp.615-618
    • /
    • 2016
  • Electrochemical noise(EN) has been used to analyze the deterioration of coating films of offshore wind substructures. In this study, prototype sensors using EN have been developed to detect the corrosion rate. To verify the reliability of sensors, experiments were conducted both in the laboratory and offshore using probe and standard samples. New analysis and data processing techniques show that the sensor can provide useful information about the corrosion rate.

Wireless monitoring of typhoon-induced variation of dynamic characteristics of a cable-stayed bridge

  • Park, Jae-Hyung;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Wind and Structures
    • /
    • v.20 no.2
    • /
    • pp.293-314
    • /
    • 2015
  • In this paper, wireless monitoring of typhoon-induced variation of dynamic characteristics of a cable-stayed bridge is presented. Firstly, cable-stayed bridge with the wireless monitoring system is described. Wireless vibration sensor nodes are utilized to measure accelerations from bridge deck and stay cables. Also, modal analysis methods are selected to extract dynamic characteristics. Secondly, dynamic responses of the cable-stayed bridge under the attack of two typhoons are analyzed by estimating relationships between wind velocity and dynamic characteristics. Wind-induced variations of deck and cable vibration responses are examined based on the field measurements under the two consecutive typhoons, Bolaven and Tembin. Finally, time-varying analyses are performed to investigate non-stationary random properties of the dynamic responses under the typhoons.

A Study on the Methyl Salicylate Dispersion in the Vicinity of Obstacles by Wind Tunnel Test (아음속 풍동을 이용한 구조물 형상 변화에 따른 살리실산메틸 확산 유동 연구)

  • Hong, Chang-Ki;Uhm, Han-Sup;Choi, Seung-Ki;Kim, Youn-Jea
    • The KSFM Journal of Fluid Machinery
    • /
    • v.17 no.6
    • /
    • pp.69-73
    • /
    • 2014
  • To predict flow fields and chemical agent dispersion in urban area, wind tunnel experiments was performed. The agent was adopted MS (methyl salicylate) because the real chemical agent is unsafe. The exact concentration of methyl salicylate was generated by the commercial gas generator (STI-2500) and three different obstacle shapes were applied (i.e., rectangular, cylinder and pyramid). The concentration was measured with the qualified ion mobility sensor and gas chromatography. The data necessary for virtual test method of the real chemical agent were obtained.

A Study of Sensor Fusion using Radar Sensor and Vision Sensor in Moving Object Detection (레이더 센서와 비전 센서를 활용한 다중 센서 융합 기반 움직임 검지에 관한 연구)

  • Kim, Se Jin;Byun, Ki Hun;Won, In Su;Kwon, Jang Woo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.2
    • /
    • pp.140-152
    • /
    • 2017
  • This Paper is for A study of sensor fusion using Radar sensor and Vision sensor in moving object detection. Radar sensor has some problems to detect object. When the sensor moves by wind or that kind of thing, it can happen to detect wrong object like building or tress. And vision sensor is very useful for all area. And it is also used so much. but there are some weakness that is influenced easily by the light of the area, shaking of the sensor device, and weather and so on. So in this paper I want to suggest to fuse these sensor to detect object. Each sensor can fill the other's weakness, so this kind of sensor fusion makes object detection much powerful.

Comparison of the effectiveness of various neural network models applied to wind turbine condition diagnosis (풍력터빈 상태진단에 적용된 다양한 신경망 모델의 유효성 비교)

  • Manh-Tuan Ngo;Changhyun Kim;Minh-Chau Dinh;Minwon Park
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.28 no.5
    • /
    • pp.77-87
    • /
    • 2023
  • Wind turbines playing a critical role in renewable energy generation, accurately assessing their operational status is crucial for maximizing energy production and minimizing downtime. This study conducts a comparative analysis of different neural network models for wind turbine condition diagnosis, evaluating their effectiveness using a dataset containing sensor measurements and historical turbine data. The study utilized supervisory control and data acquisition data, collected from 2 MW doubly-fed induction generator-based wind turbine system (Model HQ2000), for the analysis. Various neural network models such as artificial neural network, long short-term memory, and recurrent neural network were built, considering factors like activation function and hidden layers. Symmetric mean absolute percentage error were used to evaluate the performance of the models. Based on the evaluation, conclusions were drawn regarding the relative effectiveness of the neural network models for wind turbine condition diagnosis. The research results guide model selection for wind turbine condition diagnosis, contributing to improved reliability and efficiency through advanced neural network-based techniques and identifying future research directions for further advancements.

Methods for Early Fire Detection and Fire Position Determination Inside the Nacelle of Wind Turbine Generator System (풍력발전기 나셀 내부 화재 조기감지 및 화재 위치 판별 방법)

  • Kim, Da Hee;Lim, Jong Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.12
    • /
    • pp.935-943
    • /
    • 2015
  • This paper presents a method for early fire detection and fire position determination inside the nacelle of wind turbine generator system. The rising temperature and obscuration rates inside the nacelle were used as parameters for fire detection, which can minimize the possibility of a fire detection malfunction because these rising rates do not depend on the absolute values of temperature and obscuration. The fire position was determined using the time difference among various sensor positions for fire detection. The performance of the method was tasted using sets of experiments in a nacelle simulator.

Infrared Signature Analysis of a Ship for Different Atmosphere Temperature and Wind Velocity (대기온도 및 풍속 변화에 따른 함정의 적외선 신호 특성 분석)

  • Choi, Jun-Hyuk;Lee, Ji-Sun;Kim, Jung-Ho;Lee, Sung-Ho;Kim, Tae-Kuk
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.84-91
    • /
    • 2008
  • The spectral radiance received by a remote sensor at a given temperature and wavelength region is consisted of the self-emitted component directly from the object surface, the reflected component of the solar irradiation at the object surface, and the scattered component by the atmosphere without ever reaching the object surface. The IR image of a ship is mainly affected by location, meteorological condition(atmosphere temperature, wind direction and velocity, humidity etc.), atmospheric transmittance, solar position and ship surface temperature etc. Computer simulations for prediction of the IR signatures of ships are very useful to examine the effects of various meteorological conditions. In this paper, we have acquired the IR signature for different meteorological conditions by using two different computer programs. The numerical results show that the IR image contrast as compared to the background sea considering the atmosphere temperature and wind velocity.

The Strain of Pipe Framed Greenhouse by Typhoon (태풍에 의한 파이프 골조 온실의 변형도)

  • Suh, Won-Myung;Yoon, Yong-Cheol
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.4
    • /
    • pp.99-106
    • /
    • 2002
  • This research was performed to study the actual behavior of 1-2W type pipe greenhouse under the influence of typhoon by measuring the various strains in structural materials. These results can eventually be utilized in the design criteria as well as in the modification of conventional equation for calculating more realistic wind loads. The first data under the influence of Typhoon Olga arrived in Jinju on Aug. 1999 were obtained by strain gage with 10 sensor points. According to the data obtained, the typical variation of strain depending on wind pattern could be observed. The strains in structural frame were fluctuated very sensitively depending on the direction and magnitude of wind velocity. But some of the data were lost or missed by system's failure. A kind of inherent vibration pattern of greenhouse pipe frame was observed from the plotted data, but this phenomenon is not so clear as to be separated from the overall fluctuation so far. This experimental research is expected to be continued as a long term project to measure and analyze the strain pattern of structural frame depending on the various locations and section characteristics by way of adopting more efficient instrument with sufficient number of measuring points and accuracy.

A Study on Altitude Estimation using Smartphone Pressure Sensor for Emergency Positioning

  • Shin, Donghyun;Lee, Jung Ho;Shin, Beomju;Yu, Changsu;Kyung, Hankyeol;Choi, Dongwook;Kim, Yeji;Lee, Taikjin
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.9 no.3
    • /
    • pp.175-182
    • /
    • 2020
  • This paper introduces a study to estimate the user altitude in need of rescue in an emergency. The altitude is estimated by using the barometric pressure sensor embedded in the smartphone. Compared to GPS, which is degraded in urban or indoor environments, it has the advantage of not having spatial restrictions. With the endless development of smartphone hardware, it is possible to estimate the absolute altitude using the measured value if only the bias of the embedded barometric pressure sensor is applied. The altitude information of the person in need of rescue in an emergency is a great help in reducing rescue time. Since time is tight, we propose online calibration that provides the barometric pressure sensor bias used for altitude estimation through database. Furthermore, experiments were conducted to understand the characteristics of the barometric pressure sensor, which is greatly affected by wind. At the end, the altitude estimation performance was confirmed through an actual field tests in various floors in the building.