• Title/Summary/Keyword: Wind rotor

Search Result 542, Processing Time 0.03 seconds

Aerodynanamic design and performance analysis of a 5kW HAWT rotor blades (5Kw급 수평축 풍력 터빈 로터블레이드의 공력 설게 및 성능예측)

  • Kim, Mun-Oh;Kim, Bum-Suk;Mo, Jang-Ho;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.182.1-182.1
    • /
    • 2010
  • 현재 전 세계적으로 가장 널리 개발하고 보급되어지고 있는 풍력산업의 시장 규모는 매년 확대되고 있다. 특히 소형 풍력발전 시스템은 낙도 등의 전력 공급이 어려운 지역에 경제성 있는 전력 보급을 가능하게 한다. 국내의 미전화 지역과 일반 가정에서 풍력 에너지 자원을 적극 활용 개발하기 위해서 보다 우수한 성능의 풍력발전기용 블레이드를 설계하고자, 공기역학적인 최적설계에 대해 연구함으로써 추후 보급형 풍력발전 시스템의 개발에 필요한 설계 기술을 확립하고자한다. 본 연구는 설계된 블레이드의 유동해석 및 성능예측을 위하여 경제적으로 많은 지원이 필요한 대규모 풍동실험이 아닌 상용 CFD를 사용하여 보다 효율적으로 우수한 성능을 가지는 풍력 터빈을 설계함에 있다. Reynolds Averaged Navier-Stokes 방정식에 기반을 둔 CFD의 경우 이론적으로 명확한 해석이 가능하고, 실제 터빈의 운전 환경과 동일한 다양한 물리적 변수를 입력 데이터로서 활용할 수 있는 장점이 있기 때문에 풍력 터빈의 설계 과정에서 반영된 미소한 블레이드 형상변화 및 운전 조건의 변화에 따른 유동장의 변화 및 풍력터빈 성능을 정확히 예측할 수 있는 장점을 가지고 있다.

  • PDF

Application of Time-Frequency Analysis as a Tool for Noise Quality Control of DC Motor Systems (DC 모터계의 소음 품질관리를 위한 시간-주파수 분석의 적용)

  • 임상규;최창환
    • Journal of KSNVE
    • /
    • v.9 no.4
    • /
    • pp.841-848
    • /
    • 1999
  • In the quality assurance check process of DC motor systems, even though the overall sound pressure level is acceptable, there is an incident that subjective evaluation leads to failure in product quality due to annoying noise. This kind of problem may be originated from the manufacturing or assembly process. In this paper, the transient spectral analysis, or the time-frequency analysis is applied to the noise quality problem. For the case study, the cause of annoying noise in the wind shield wiper motor is experimentally analyzed in detail. It is concluded that the defect in the shaft causes the impact noise which is not detectable by steady spectral analysis. Also demonstrated is how the time-frequency analysis is effectively applied to the annoying noise identification of the rotor-gear system.

  • PDF

Analysis and Design of high-efficiency Permanent Magnet Synchronous Motor/Generator for Renewable Energy Application (신재생 에너지 적용을 위한 고효율 영구자석 동기 전동/발전기의 해석 및 설계)

  • You, Dae-Joon;Kim, Il-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.5
    • /
    • pp.955-964
    • /
    • 2011
  • In renewable energy system such as flywheel energy storage system, wind power and solar power, the motor/generator is the important key for offering the electric energy to the electric loads. For example, the heavy and large flywheel is rotated by electromagnetic torque of pemanent magnet synchronous motor (PMSM) and, in case of a breakdown of electric current, the PMSM used as generator supplies electric energy for the various electric utilities using mechanical rotation energy of the flywheel. Thus, design of a motor/generator should be performed in effort to reduce cogging torque and electromagnetic loss for high efficiency. In our paper, a slotless permanent magnet synchronous motor/generator (SPMSM/G) with output power 15kW at the rotor speed 18000rpm is designed from electromagnetic analysis and dynamic performance analysis. In analytical approach, design parameters such as back electro-motive force (back EMF), inductance and electromagnetic torque are derived from analytical method which is one of the electromagnetic analysis method. And using the design parameters, this paper deal with system design considering the driving characteristics and electric load in required power. Finally, the analytical results are verified by the experiment and finite element method (FEM).

Experimental Study on Tip Clearance Effects for Performance Characteristics of Ducted Fan

  • Raza, Iliyas;Choi, Hyun-Min;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.395-398
    • /
    • 2009
  • Currently, a new generation of ducted fan UAVs (Unmanned Aerial Vehicles) is under development for a wide range of inspection, investigation and combat missions as well as for a variety of civil roles like traffic monitoring, meteorological studies, hazard mitigation etc. The current study presents extensive results obtained experimentally in order to investigate the tip clearance effects on performance characteristics of a ducted fan for small UAV systems. Three ducted fans having different tip clearance gap and with same rotor size were examined under three different yawed conditions of calibrated slanted hot-wire probe. Three dimensional velocity flow fields were measured from hub to tip at outlet of the ducted fan. The analysis of data were done by PLEAT (Phase locked Ensemble Averaging Technique) and three non-linear differential equations were solved simultaneously by using Newton -Rhapson numerical method. Flow field characteristics such as tip vortex and secondary flow were confirmed through axial, radial and tangential velocity contour plots. At the same time, the effects of tip clearance on axial thrust and input power were also investigated by using wind tunnel measurement system. For enhancing the performance of ducted fan, tip clearance level should be as small as possible.

  • PDF

Prediction of Performance Change for the Intake system of Smart UAV With Freestream Wind Direction Using CFD Analysis (CFD를 이용한 풍향에 따른 스마트무인기 흡기구 성능 변화 예측)

  • Jung Y. W.;Jun Y. M.;Yang S. S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.95-99
    • /
    • 2004
  • The developing Smart UAV in KARI supposes high speed flight as like a conventional plane, as well as vertical takeoff and landing as like a helicopter. Therefore, the air intake system should be designed to provide the sufficient air flow to the engine and the maximum possible total pressure recovery at the engine intake screen over a wide range of flight conditions. For this purpose, we designed the intake system using a pilot type intake model and plenum chamber In this paper, we designed the intake model and analyzed the performance of designed intake system using the general-purpose commercial CFD code, CFD-ACE+ For 3-D calculation, we generated mesh using the unstructured gird and used $\kappa-\epsilon$ turbulence model. The analysis results of the total pressure variation and the velocity distribution was illustrated in this paper. The pressure recovery and distortion coefficient at a plane coincident with the compressor inlet were calculated and streamline variation through the intake system was investigated at the worst condition as well as the standard flight condition.

  • PDF

Condition Monitoring of Rotating Machine with a Change in Speed Using Hidden Markov Model (은닉 마르코프 모델을 이용한 속도 변화가 있는 회전 기계의 상태 진단 기법)

  • Jang, M.;Lee, J.M.;Hwang, Y.;Cho, Y.J.;Song, J.B.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.22 no.5
    • /
    • pp.413-421
    • /
    • 2012
  • In industry, various rotating machinery such as pumps, gas turbines, compressors, electric motors, generators are being used as an important facility. Due to the industrial development, they make high performance(high-speed, high-pressure). As a result, we need more intelligent and reliable machine condition diagnosis techniques. Diagnosis technique using hidden Markov-model is proposed for an accurate and predictable condition diagnosis of various rotating machines and also has overcame the speed limitation of time/frequency method by using compensation of the rotational speed of rotor. In addition, existing artificial intelligence method needs defect state data for fault detection. hidden Markov model can overcome this limitation by using normal state data alone to detect fault of rotational machinery. Vibration analysis of step-up gearbox for wind turbine was applied to the study to ensure the robustness of diagnostic performance about compensation of the rotational speed. To assure the performance of normal state alone method, hidden Markov model was applied to experimental torque measuring gearbox in this study.

Aerodynamic Design of SUAV Flaperon (스마트무인기 플래퍼론 공력설계)

  • Choi, Seong-Wook;Kim, Jai-Moo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.8
    • /
    • pp.26-33
    • /
    • 2005
  • Smart UAV, which adopting tiltrotor aircraft concept, requires vertical take-off and landing, long endurance and high speed capability. These contradictable flight performances are hard to meet unless the operation of flap system which should reveal optimal performance for each flight mode. In order to design SUAV flaperon satisfying the three performance requirements, various configurations are generated and their aerodynamic performances are analyzed using numerical flow computations around flap systems. Considering aerodynamic performance and structural simplicity, a final flap configuration is selected and the performance is validated through the wind tunnel testing for 40% scale model.

A Design of 10 kW Class Counter-Rotating Tidal Turbine Focusing on the Improvement of Operating Performance (성능계수 향상을 위한 10 kW급 상반전 조류터빈의 설계)

  • Hoang, Anh Dung;Kim, Bu-Gi;Kim, Jun-Ho;Yang, Chang-Jo
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.3
    • /
    • pp.53-59
    • /
    • 2015
  • Tidal turbine, which is relatively similar to wind turbine in term of operational principle, has become a potential solution for the sustainable development of global energy. This paper introduces author's work on tidal turbine which aims to improve the power efficiency by the adaption of counter-rotating concept. The turbine system is modelled and analyzed using computational simulation commercial code. Compared with other works, the counter-rotating tidal turbine presented here is expected to operate stably with high performance throughout a wide range of tip-speed-ratio. Moreover, the equability of individual performance of each rotor is an advantage.

An Experimental Study of Fuselage Drag and Stability Characteristics of a Helicopter Configuration (회전익 항공기 형상의 기체공력 특성에 관한 실험적 연구)

  • Oh, Se-Yoon;Park, Keum-Yong;Lee, Jong-Geon;Ahn, Seung-Ki
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.9
    • /
    • pp.9-15
    • /
    • 2005
  • This paper describes the test carried out on an experimental study of fuselage drag and stability characteristics of a helicopter configuration and the test techniques developed for the testing and the lessons learned in the Agency for Defense Development Low Speed Wind Tunnel(ADD-LSWT). The main objective of this test is to determine the drag and stability characteristics of helicopter configurations according to the various configuration changes. The fuselage model with a highly modular structure is a representation of 1:8 scale of the external contour of the conceptual design helicopter configuration with rotating main rotor hub including blade stubs capable of rotating up to 500 rpm. The test results are compared with the available similar data and fair to good agreement is obtained.

Fabrication and Characteristics of Field Coils for HTS Motor (고온초전도 동기모터의 계자코일 제작과 특성)

  • Sohn, M.H.;Lee, E.Y.;Baik, S.K.;Jo, Y.S.;Kwon, W.S.;Kwon, Y.K.
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.735-737
    • /
    • 2003
  • A superconducting motor consisting of high temperature superconducting (HTS) rotor and air-core stator is under development in Korea Electrotechnology Research Institute. HTS motor was designed for having the rated power of 100hp at 1800 rpm. HTS field winding is composed of sixteen HTS race track shaped coils wound with stainless steel-reinforced Bi-2223 tape conductor by react and wind fabrication method. Nomex Paper was used for electrical insulation. Each of four magnet pole assemblies was constructed with four double pancake sub-coils, mechanically stacked and electrically in series. Four magnet assemblies were fixed on an aluminum support structure to make effective heat transfer. Critical current (Ic) of HTS field winding was 41A but minimum Ic of sub-coils was 35A at 77K and self field. Joule heat generated in HTS field winding was 2.11W at 77K and 35A.

  • PDF