• Title/Summary/Keyword: Wind power system

Search Result 1,639, Processing Time 0.025 seconds

Analysis on Required Capacity of Energy Storage System to Mitigate Wind Power Fluctuation (풍력발전기의 출력 안정화를 위한 에너지 저장장치 용량 산정 사례연구)

  • Kang, Min Hyeok;Chae, Sang Heon;Ahn, Jin Hong;Kim, Eel-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.37 no.6
    • /
    • pp.59-68
    • /
    • 2017
  • In accordance with the policy of local government, the large scale of wind farms have been installed in Jeju power system. However, The intermittent characteristics of wind power output may cause grid voltage and frequency variation, especially in weak power system. One of the solution to solve this problem is installation of Energy storage system (ESS). In this case, the ESS will regulate the active power generated from wind farm to mitigate fluctuation. Actually, the local government of Jeju island constructed ESS connected to Hangwon wind turbine in 2016. From this point, this paper analyzes requirement capacity of ESS to mitigate wind power fluctuation based on measured data from Hangwon wind turbine and ESS. The simulation results will be carried out by Matlab program.

Simulation of the Wind Power Generation System with Energy Storage System (전기저장 장치가 포함된 풍력발전 시스템에 대한 시뮬레이션)

  • Oh, Si-Doek;Lim, Hee-Sue;Seo, Seok-Ho;Kim, Ki-Young
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.05a
    • /
    • pp.303-306
    • /
    • 2008
  • The wind power generation systems have a fluctuating or intermittent power output due to the variability of the wind speed. The amount of wind generation which can be connected to the grid without causing voltage stability problems is limited. In this study, the simulation of the wind power generation including energy storage system were performed to reduce the fluctuation of wind power output and to obtain the optimal operation planning of energy storage system.

  • PDF

Operational Analysis of Energy Storage System to Improve Performance of Wind Power System with Induction Generator (농형유도 풍력발전기의 성능개선을 위한 에너지저장장치의 동작특성 분석)

  • Lee, Ji-Heon;Shim, Myong-Bo;Lee, Hye-Yeon;Han, Byung-Moon;Yang, Seung-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.6
    • /
    • pp.1138-1145
    • /
    • 2009
  • This paper presents an active and reactive power compensator for the wind power system with squirrel-cage induction generator. The output power of a wind power system changes irregularly according to the variation of wind speed. The developed system is able to continuously compensate the active and reactive power. The 3-phase inverter operates for the compensation of reactive power, while the DC/DC converter with super-capacitors operates for the compensation of active power. The operational feasibility of the proposed model was verified by simulations with PSCAD/EMTDC and the feasibility of hardware implementation was confirmed by experimental works with a scaled hardware model. The proposed compensator can be expected that developed system may be used to compensated the abrupt power variation due to sudden change of wind speed or sudden power-drop by tower effect. It can be also applied for the distributed generation and the Micro-Grid.

Impact Analysis of Wind Power on Power System Reliability with Electric Vehicles (풍력발전과 전기자동차가 전력계통의 신뢰도에 미치는 영향 평가)

  • Kim, Dam;Park, Hyeongon;Kwon, Hungyu;Park, Jong-Keun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.64 no.11
    • /
    • pp.1535-1542
    • /
    • 2015
  • An increasing number of electric vehicles (EVs) in power system affects its reliability in various aspects. Especially under high EV penetration level, new generating units are required to satisfy system's adequacy criterion. Wind power generation is expected to take the major portion of the new units due to environmental and economic issues. In this paper, the system reliability is analyzed using Loss of Load Expectation (LOLE) and Expected Energy Not Served (EENS) under each and both cases of increasing wind power generation and EVs. A probabilistic multi-state modeling method of wind turbine generator under various power output for adequate reliability evaluation is presented as well. EVs are modeled as loads under charging algorithm with Time-Of-Use (TOU) rates in order to incorporate EVs into hour-to-hour yearly load curve. With the expected load curve, the impact of EVs on the system adequacy is analyzed. Simulations show the reliability evaluation of increasing wind power capacity and number of EVs. With this method, system operator becomes capable of measuring appropriate wind power capacity to meet system reliability standard.

Assessment of Wind Power Resources for Rural Green-village Planning (농촌 그린빌리지 계획을 위한 풍력에너지 자원분석)

  • Nam, Sang-Woon;Kim, Dae-Sik
    • Journal of Korean Society of Rural Planning
    • /
    • v.14 no.2
    • /
    • pp.25-32
    • /
    • 2008
  • Wind energy, which is one of renewable energy, would be useful resources that can be applied to making energy recycling villages without using fossil fuels. This study analyzed energy potential on wind power considering weather condition in three rural villages and compared with energy consumption surveyed. A wind turbine system in the 5kW class can generate 26.1%, 73.9% and 39.5% of the yearly mean consumption of electric power per house in Makhyun, Boojang and Soso respectively. A 750kW wind turbine system can generate 1.7%, 30.3% and 22.1% of the total amount of electric power consumption in three study villages respectively. Wind power energy density was too low in Makhyun and Soso, so it is determined that the application of wind turbine system is almost impossible. Wind energy potential was generally low in Boojang either, but it is evaluated that there is a little possibility of wind power generation relatively. For practical application of renewable energy to rural green-village planning, assessment of energy potential for the local area should be preceded.

Analysis of effect on power system considering the maximum penetration limit of wind power (풍력발전 한계운전용량에 대한 계통영향 분석)

  • Myung, Ho-San;Kim, Bong-Eon;Kim, Hyeong-Taek;Kim, Se-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.3
    • /
    • pp.19-25
    • /
    • 2012
  • About supply and demand to see that you need to match, the limitations of wind power capacity is low demand and the commitment of the general generator will exist between the minimum generation. if the turbine's output can be controlled, The limitation of wind power capacity will be adopted based on instant power generation. Namely, The minimum limits of wind power generation based load operation by calculating the amount that is higher than if the output should be restricted to highest operation. in this paper, we committed to the demand for low enough that the combination of the general generator of wind power capacity to accommodate the operation of determining whether the limit is intended to. For this, power system analysis program PSS/E was used, Jeju system by implementing the model simulations were performed.

CNN-LSTM based Wind Power Prediction System to Improve Accuracy (정확도 향상을 위한 CNN-LSTM 기반 풍력발전 예측 시스템)

  • Park, Rae-Jin;Kang, Sungwoo;Lee, Jaehyeong;Jung, Seungmin
    • New & Renewable Energy
    • /
    • v.18 no.2
    • /
    • pp.18-25
    • /
    • 2022
  • In this study, we propose a wind power generation prediction system that applies machine learning and data mining to predict wind power generation. This system increases the utilization rate of new and renewable energy sources. For time-series data, the data set was established by measuring wind speed, wind generation, and environmental factors influencing the wind speed. The data set was pre-processed so that it could be applied appropriately to the model. The prediction system applied the CNN (Convolutional Neural Network) to the data mining process and then used the LSTM (Long Short-Term Memory) to learn and make predictions. The preciseness of the proposed system is verified by comparing the prediction data with the actual data, according to the presence or absence of data mining in the model of the prediction system.

A Study on the realrization of Low Wind Generation (저 풍속 발전 시스템 구현에 관한 연구)

  • Ji, Myoung-Kuk;Kong, Tae-Woo;Bae, Chul-Whan;Chung, Han-Shik;Jeong, Hyo-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.891-896
    • /
    • 2001
  • The recent technology of Wind Power Generation in the world is rapidly developed better than the past time. The extra-large wind power generation system of the MW-class and the large wind power generation system of the hundreds kW-class were developed and became for common use. So, this paper is basic experiment for wind power generation at low wind, and aimed for small wind power generation system.

  • PDF

Optimal Power Control of Wind Induction Generator System (풍력발전용 유도발전기 시스템의 최적제어)

  • Choi SunPill;Heo TaeWon;Park JeeHo;Noh TaeGyun;Jung JaeRoun;Woo JungIn
    • Proceedings of the KIPE Conference
    • /
    • 2002.07a
    • /
    • pp.69-72
    • /
    • 2002
  • In this study, We proposed high efficiency wind power generator system for induction generator used SVPWM swiching inverter. First, We propose Equivalient Circuit for Induction Generator, it's characteristics equation, and power equation of slip. In addition, we suggest Pick Power Traction Slip control methods, adapted variable wind power system. We study simulation result for the proposed system and output power by slip effect. and we identify SVPWM of suitable wind power system by comparison between SPWM and SVPWM Consequently, we show that the system control result from variable wind power is suitable.

  • PDF

A Study on the Characteristics of the Combined Generation System by Solar and Wind Energy with Power Storage Apparatus for the Geographical Features

  • Lim, Jung-Yeol;Kang, Byeong-bok;Cha, In-Su
    • Journal of Power Electronics
    • /
    • v.2 no.1
    • /
    • pp.11-18
    • /
    • 2002
  • The development of the solar and the wind energy is necessary since the future alternative energies that have no pollution and no limitation are restricted. Currently MW Class power generation system has been developed, but it still has a few faults with the weather condition. In order to solve these existing problems, combined generation system of photovoltaic and wind power was suggested. It combines wind power energy and solar energy to have the supporting effect from each other. However, since even combined generation system cannot always generate stable output with everchanging weather condition, power storage apparatus that uses elastic energy of spiral spring to combined generation system was also added for the present study.