• Title/Summary/Keyword: Wind power plant control

Search Result 54, Processing Time 0.026 seconds

Power Network's Operation Influence Analysis of Wind Power Plant in Jeju island (제주지역 풍력발전기에 의한 전력계통운영 영향분석)

  • Kim, Young-Hwan;Choi, Byung-Chun;Jang, Si-Ho;Kim, Se-Ho;Jwa, Jong-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2005.07a
    • /
    • pp.127-129
    • /
    • 2005
  • Construction of wind power plant is increasing rapidly because Jeju island is known as the most suitable place for wind power plant. Rut wind power plant is difficult electric power control and it has a rapid electric power fluctuation. Such a problem has a bad influence on electric power network in small electric network like Jeju. Therefore, we forecast the amount of wind power plant construction by weather information and the rate of utilization for existing facility. We investigate the contribution degree for electric Power demand, economic effect, the case of power network influence. So we forecast influence of wind power plant for Jeju power network's operation in the near future.

  • PDF

Research on Voltage Stability Boundary under Different Reactive Power Control Mode of DFIG Wind Power Plant

  • Ma, Rui;Qin, Zeyu;Yang, Wencan;Li, Mo
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.6
    • /
    • pp.1571-1581
    • /
    • 2016
  • A novel method is proposed to construct the voltage stability boundary of power system considering different Reactive Power Control Mode (RPCM) of Doubly-Fed Induction Generator (DFIG) Wind Power Plant (WPP). It can be used for reflecting the static stability status of grid operation with wind power penetration. The analytical derivation work of boundary search method can expound the mechanism and parameters relationship of different WPP RPCMs. In order to improve the load margin and find a practical method to assess the voltage security of power system, the approximate method of constructing voltage stability boundary and the critical points search algorithms under different RPCMs of DFIG WPP are explored, which can provide direct and effective reference data for operators.

Analysis of Response of a Wind Farm During Grid/inter-tie Fault Conditions (그리드/연계선 사고 시 풍력발전단지의 응동 분석)

  • Lee, Hye-Won;Kim, Yeon-Hee;Zheng, Tai-Ying;Lee, Sang-Cheol;Kang, Yong-Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.6
    • /
    • pp.1128-1133
    • /
    • 2011
  • In a wind farm, a large number of small wind turbine generators (WTGs) operate whilst a small number of a large generator do in a conventional power plant. To maintain high quality and reliability of electrical energy, a wind farm should have equal performance to a thermal power plant in the transient state as well as in the steady state. The wind farm shows similar performance to the conventional power plant in the steady state due to the advanced control technologies. However, it shows quite different characteristics during fault conditions in a grid, which gives significant effects on the operation of a wind farm and the power system stability. This paper presents an analysis of response of a wind farm during grid fault conditions. During fault conditions, each WTG might produce different frequency components in the voltage. The different frequency components result in the non-fundamental frequencies in the voltage and the current of a wind farm, which is called by "beats". This phenomenon requires considerable changes of control technologies of a WTG to improve the characteristics in the transient state such as a fault ride-through requirement of a wind farm. Moreover, it may cause difficulties in protection relays of a wind farm. This paper analyzes the response of a wind farm for various fault conditions using a PSCAD/EMTDC simulator.

The Analysis of Active Power Control Requirements in the Selected Grid Codes for Wind Farm

  • Kim, Mi-Young;Song, Yong-Un
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.4
    • /
    • pp.1408-1414
    • /
    • 2015
  • The renewable energies such as photovoltaic power, wind power and biomass have grown to a greater extent as decarbonization techniques. The renewable energies are interconnected to power systems (or electrical grids) in order to increase benefits from economies of scale, and the extra attention is focused on the Grid Code. A grid code defines technical parameters that power plants must meet to ensure functions of power systems, and the grid code determined by considering power system characteristics is various across the country. Some TSO (Transmission System Operator) and ISO (Independent System Operator) have issued grid code for wind power and the special requirements for offshore wind farm. The main purpose of the above grid code is that wind farm in power systems has to act as the existing power plants. Therefore wind farm developer and wind turbine manufacturer have great difficulty in grasping and meeting grid code requirements. This paper presents the basic understanding for grid codes of developed countries in the wind power and trends of those technical requirements. Moreover, in grid code viewpoint, the active power control of wind power is also discussed in details.

Dedicated Cutback Control of a Wind Power Plant Based on the Ratio of Command Power to Available Power

  • Thapa, Khagendra;Yoon, Gihwan;Lee, Sang Ho;Suh, Yongsug;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.835-842
    • /
    • 2014
  • Cutback control in a grid code is one of the functions of a wind power plant (WPP) that is required to support the system protection and frequency stability. When a cutback control command signal is delivered to the WPP from the system operator, the output of a WPP should be decreased to 20% of the rated power within 5 s. In this paper, we propose a dedicated cutback control algorithm of a WPP based on the ratio of the command power to the available power. If a cutback control signal is delivered, the algorithm determines the pitch angle for the cutback control and starts the pitch angle control. The proposed algorithm keeps the rotor speed at the speed before the start of the cutback control to quickly recover the previous output prior to the cutback control. The performance of the algorithm was validated for a 100 MW aggregated WPP based on a permanent magnet synchronous generator under various wind conditions using an EMTP-RV simulator. The results clearly shows that the proposed algorithm not only successfully reduces the output to the command power within 5 s by minimizing the fluctuation of the pitch angle, but also rapidly recovers to the output level before the cutback control.

Dynamic Droop-based Inertial Control of a Wind Power Plant

  • Hwang, Min;Chun, Yeong-Han;Park, Jung-Wook;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1363-1369
    • /
    • 2015
  • The frequency of a power system should be maintained within the allowed limits for stable operation. When a disturbance such as generator tripping occurs in a power system, the frequency is recovered to the nominal value through the inertial, primary, and secondary responses of the operating synchronous generators (SGs). However, for a power system with high wind penetration, the system inertia will decrease significantly because wind generators (WGs) are operating decoupled from the power system. This paper proposes a dynamic droop-based inertial control for a WG. The proposed inertial control determines the dynamic droop depending on the rate of change of frequency (ROCOF). At the initial period of a disturbance, where the ROCOF is large, the droop is set to be small to release a large amount of the kinetic energy (KE) and thus the frequency nadir can be increased significantly. However, as times goes on, the ROCOF will decrease and thus the droop is set to be large to prevent over-deceleration of the rotor speed of a WG. The performance of the proposed inertial control was investigated in a model system, which includes a 200 MW wind power plant (WPP) and five SGs using an EMTP-RV simulator. The test results indicate that the proposed scheme improves the frequency nadir significantly by releasing a large amount of the KE during the initial period of a disturbance.

Fault Response of a DFIG-based Offshore Wind Power Plant Taking into Account the Wake Effect

  • Kim, Jinho;Lee, Jinsik;Suh, Yongsug;Lee, Byongjun;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.827-834
    • /
    • 2014
  • In order to meet the low voltage ride-through requirement in a grid code, a wind power plant (WPP) has to stay connected to a grid, supporting the voltage recovery for a grid fault. To do this, a plant-level controller as well as a wind generator (WG) controller is essential. The dynamic response of a WPP should be analyzed in order to design a plant-level controller. The dynamic response of a WPP for a grid fault is the collective response of all WGs, which depends on the wind speed approaching the WG. Thus, the dynamic response of a WPP should be analyzed by taking the wake effect into consideration, because different wind speeds at WGs will result in different responses of the WPP. This paper analyzes the response of a doubly fed induction generator (DFIG)-based offshore WPP with a grid fault taking into account the wake effect. To obtain the approaching wind speed of a WG in a WPP, we considered the cumulative impact of multiple shadowing and the effect of the wind direction. The voltage, reactive power, and active power at the point of common coupling of a 100 MW DFIG-based offshore WPP were analyzed during and after a grid fault under various wind and fault conditions using an EMTP-RV simulator. The results clearly demonstrate that not considering the wake effect leads to significantly different results, particularly for the reactive power and active power, which could potentially lead to incorrect conclusions and / or control schemes for a WPP.

A New Structure of Communication System for Monitoring and Control of Heterogeneous Wind Tubines (이종 풍력 터빈의 감시 제어를 위한 통신 시스템 구조)

  • Kim, Tae-Hyoung;Hwang, Tae-Ho;Ham, Kyung-Sun
    • Journal of The Institute of Information and Telecommunication Facilities Engineering
    • /
    • v.10 no.1
    • /
    • pp.40-45
    • /
    • 2011
  • As increasing the importance of renewable energy recently, the scale of a wind power plant is increasing to the number of GW scale and specially, it is trend to move from onshore to offshore to use the higher quantity and quality of wind. Consequently to meet the trend, it is largely considered the importance of communication protocol to control and monitor remotely. But, because the communication protocol between the control center and a wind turbine has been independently developed by each wind turbine vendor, it is absence of the compatibility and extensibility when the heterogeneous wind turbines are installed in the wind farm. The IEC 61400-25 is the specifying standard for these problems in Europe. In this paper, we will show the state of these problems and present a new structure of communication based on the IEC 61400-25 to get the compatibility and extensibility between a control center and wind turbines.

  • PDF

Voltage Control for a Wind Power Plant Based on the Available Reactive Current of a DFIG and Its Impacts on the Point of Interconnection (이중여자 유도형 풍력발전기 기반 풍력단지의 계통 연계점 전압제어)

  • Usman, Yasir;Kim, Jinho;Muljadi, Eduard;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.23-30
    • /
    • 2016
  • Wake effects cause wind turbine generators (WTGs) within a wind power plant (WPP) to produce different levels of active power and subsequent reactive power capabilities. Further, the impedance between a WTG and the point of interconnection (POI)-which depends on the distance between them-impacts the WPP's reactive power injection capability at the POI. This paper proposes a voltage control scheme for a WPP based on the available reactive current of the doubly-fed induction generators (DFIGs) and its impacts on the POI to improve the reactive power injection capability of the WPP. In this paper, a design strategy for modifying the gain of DFIG controller is suggested and the comprehensive properties of these control gains are investigated. In the proposed scheme, the WPP controller, which operates in a voltage control mode, sends the command signal to the DFIGs based on the voltage difference at the POI. The DFIG controllers, which operate in a voltage control mode, employ a proportional controller with a limiter. The gain of the proportional controller is adjusted depending on the available reactive current of the DFIG and the series impedance between the DFIG and the POI. The performance of the proposed scheme is validated for various disturbances such as a reactive load connection and grid fault using an EMTP-RV simulator. Simulation results demonstrate that the proposed scheme promptly recovers the POI voltage by injecting more reactive power after a disturbance than the conventional scheme.

Control of the Wind Power Plant Frequency Variance Loop with Respect to Rotor Speed (회전자 속도에 따라 변동하는 풍력발전단지 주파수 편차 루프 제어 연구)

  • Chang Min Lee;Hyen jun Choi;Ji Hoon Park;Seong Hwan Kim
    • New & Renewable Energy
    • /
    • v.20 no.2
    • /
    • pp.55-64
    • /
    • 2024
  • To ensure the frequency stability of wind power generation, we analyzedd the existing technology and proposedd a method for changing the gain value with respect to to the rotor speed by adding the MPPT reference value and output reference value that reflect the system frequency. The MPPT control and output were compared and calculated for performance verification. Subsequently, the application of the proposed algorithm led to an increased output when compared with that of the existing control method.