• Title/Summary/Keyword: Wind power integration

Search Result 60, Processing Time 0.036 seconds

The study of Safety education, safe experience for students to develop research simulreyiteo (안전체험 시뮬레이터 개발에 관한 연구)

  • Kim, Tae-hwan
    • Journal of the Society of Disaster Information
    • /
    • v.6 no.1
    • /
    • pp.46-59
    • /
    • 2010
  • In this study, the safety training of comparative analysis of the realities of Korea's safety training and international experience and practical training for the safety experience of a virtual reality simulator, the development of safe conduct as a controlled motion simulator system, image H / W and the control system works, sound effects H / W and the control system works, 4D special effects (smoke, heat, wind, vibration) and a control system integration, mission control system for the selection and evaluation of the proposal, and safety training on Game S / W of development as we have never experienced an earthquake action plan and evacuate to escape the power of experience and the experience of an earthquake (vibration + video), Also the collapse and a fire escape on the experience of following second disaster, the building collapsed during an escape experience in the field, in case of fire According to the initial fire suppression and fire extinguisher usage experience - experience of smoke and heat to escape in, Moreover, the Daegu subway fire in public places such as subway and evacuated to escape the experience, considering the suggested Simulator.

The Structure of Three-dimensional Turbulent Flow Fields of a Cone Type Gas Swirl Burner (콘형 가스 스월버너의 3차원 난류 유동장 구조)

  • Kim, J.K.;Jeong, K.J.
    • Journal of Power System Engineering
    • /
    • v.5 no.2
    • /
    • pp.22-29
    • /
    • 2001
  • This paper represents axial mean velocity, turbulent kinetic energy and swirl number based on momentum flux measured in the X-Y plane and Y-Z plane respectively of a cone type gas swirl burner by using X-probe from the hot-wire anemometer system. This experiment is carried out at flow rates 350 and $450{\ell}/min$ respectively, which are equivalent to the combustion air flow rate necessary for heat release 15,000 kcal/hr in gas furnace, in the test section of a subsonic wind tunnel. Axial mean velocities and turbulent kinetic energies show that their maximum values exist centering around narrow slits situated radially on the edge of and in the forefront of a burner until $X/R{\fallingdotseq}1.5$, but they have a peculiar shape like a starfish diffusing and developing into inward and outward of a burner by means of the mixing between flows ejected from narrow slits, an inclination baffle plate and swirl vanes respectively according to downstream regions. Moreover, they show a relatively large value in the inner region of 0.5$S_m$ obtained by integration of velocity profiles shows a characteristic that has an inflection point composing of the maximum and minimum value until X/R<3, but shows close agreement with the geometric swirl number after a distance of X/R=3.

  • PDF

An Experimental Study on the Bonding Characteristic of Steel Tubular Joint Connection filled with Fiber Reinforced High Performance Cementeous Grout (섬유보강 고성능시멘트계 그라우트가 적용된 강관 연결부의 부착특성에 대한 실험적 연구)

  • Oh, Hong-Seob;Seo, Gyo;Kim, Sang-Hyeon;Ko, Sang-Jin;Lee, Hyeon-Gi
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.21-29
    • /
    • 2014
  • This paper deals with the bonding characteristic of grouted joint connections of monopile support structures for offshore wind power facilities. For the integration of pile connection of wind power supporting structure, fiber reinforced high performance cementeous grout was developed and the ultimate compressive strength of it is 125MPa and the direct tensile strength is 7.5 MPa at 7 days. To assess the bond strength of grout filled in pile connection, small scaled direct bond tests under axially loaded was performed and analyzed according the existing guidelines. The fiber volume fraction (0%, 0.5% and 0.9%), aspect ratio of fiber (60 and 80) and the ratio of height to spacing of shear key (0.013 and 0.056) were adopted as the experimental variables. From the test results, the maximum bond strength among the all specimens was 30.8MPa and the bond strength of grouted connection was affected by the ratio of height to spacing of shear key than the fiber volume fraction.

Design and Implementation of Stand-alone Microgrid Monitoring System for Green Energy Independence Island (그린에너지 자립섬을 위한 계통 독립형 마이크로그리드 모니터링 시스템 설계 및 구현)

  • Song, Hwa-Jung;Park, Kyoung-Wook;Kim, Eung-Kon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.10 no.4
    • /
    • pp.527-532
    • /
    • 2015
  • In domestic island regions, the power supply generally depends on diesel generators due to difficulties of grid connection. To solve this issue, recently, the study on the stand-alone microgrid technology and its test are being actively conducted. In this paper, we propose the stand-alone microgrid integration monitoring system for energy independence island. First, we design the software architecture for monitoring of solar, wind, diesel power generation facilities, transmission and distribution of grid network, and energy storage system. Then, we implement the monitoring software that allows administrators to identify and run the monitoring software easily.

Study on Thermal Load Capacity of Transmission Line Based on IEEE Standard

  • Song, Fan;Wang, Yanling;Zhao, Lei;Qin, Kun;Liang, Likai;Yin, Zhijun;Tao, Weihua
    • Journal of Information Processing Systems
    • /
    • v.15 no.3
    • /
    • pp.464-477
    • /
    • 2019
  • With the sustained and rapid development of new energy sources, the demand for electric energy is increasing day by day. However, China's energy distribution is not balanced, and the construction of transmission lines is in a serious lag behind the improvement of generating capacity. So there is an urgent need to increase the utilization of transmission capacity. The transmission capacity is mainly limited by the maximum allowable operating temperature of conductor. At present, the evaluation of transmission capacity mostly adopts the static thermal rating (STR) method under severe environment. Dynamic thermal rating (DTR) technique can improve the utilization of transmission capacity to a certain extent. In this paper, the meteorological parameters affecting the conductor temperature are analyzed with the IEEE standard thermal equivalent equation of overhead transmission lines, and the real load capacity of 220 kV transmission line is calculated with 7-year actual meteorological data in Weihai. Finally, the thermal load capacity of DTR relative to STR under given confidence is analyzed. By identifying the key parameters that affect the thermal rating and analyzing the relevant environmental parameters that affect the conductor temperature, this paper provides a theoretical basis for the wind power grid integration and grid intelligence. The results show that the thermal load potential of transmission lines can be effectively excavated by DTR, which provides a theoretical basis for improving the absorptive capacity of power grid.

Integrated System for Autonomous Proximity Operations and Docking

  • Lee, Dae-Ro;Pernicka, Henry
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.1
    • /
    • pp.43-56
    • /
    • 2011
  • An integrated system composed of guidance, navigation and control (GNC) system for autonomous proximity operations and the docking of two spacecraft was developed. The position maneuvers were determined through the integration of the state-dependent Riccati equation formulated from nonlinear relative motion dynamics and relative navigation using rendezvous laser vision (Lidar) and a vision sensor system. In the vision sensor system, a switch between sensors was made along the approach phase in order to provide continuously effective navigation. As an extension of the rendezvous laser vision system, an automated terminal guidance scheme based on the Clohessy-Wiltshire state transition matrix was used to formulate a "V-bar hopping approach" reference trajectory. A proximity operations strategy was then adapted from the approach strategy used with the automated transfer vehicle. The attitude maneuvers, determined from a linear quadratic Gaussian-type control including quaternion based attitude estimation using star trackers or a vision sensor system, provided precise attitude control and robustness under uncertainties in the moments of inertia and external disturbances. These functions were then integrated into an autonomous GNC system that can perform proximity operations and meet all conditions for successful docking. A six-degree of freedom simulation was used to demonstrate the effectiveness of the integrated system.

Prismatic-core advanced high temperature reactor and thermal energy storage coupled system - A preliminary design

  • Alameri, Saeed A.;King, Jeffrey C.;Alkaabi, Ahmed K.;Addad, Yacine
    • Nuclear Engineering and Technology
    • /
    • v.52 no.2
    • /
    • pp.248-257
    • /
    • 2020
  • This study presents an initial design for a novel system consisting in a coupled nuclear reactor and a phase change material-based thermal energy storage (TES) component, which acts as a buffer and regulator of heat transfer between the primary and secondary loops. The goal of this concept is to enhance the capacity factor of nuclear power plants (NPPs) in the case of high integration of renewable energy sources into the electric grid. Hence, this system could support in elevating the economics of NPPs in current competitive markets, especially with subsidized solar and wind energy sources, and relatively low oil and gas prices. Furthermore, utilizing a prismatic-core advanced high temperature reactor (PAHTR) cooled by a molten salt with a high melting point, have the potential in increasing the system efficiency due to its high operating temperature, and providing the baseline requirements for coupling other process heat applications. The present research studies the neutronics and thermal hydraulics (TH) of the PAHTR as well as TH calculations for the TES which consists of 300 blocks with a total heat storage capacity of 150 MWd. SERPENT Monte Carlo and MCNP5 codes carried out the neutronics analysis of the PAHTR which is sized to have a 5-year refueling cycle and rated power of 300 MWth. The PAHTR has 10 metric tons of heavy metal with 19.75 wt% enriched UO2 TRISO fuel, a hot clean excess reactivity and shutdown margin of $33.70 and -$115.68; respectively, negative temperature feedback coefficients, and an axial flux peaking factor of 1.68. Star-CCM + code predicted the correct convective heat transfer coefficient variations for both the reactor and the storage. TH analysis results show that the flow in the primary loop (in the reactor and TES) remains in the developing mixed convection regime while it reaches a fully developed flow in the secondary loop.

A compactly integrated cooling system of a combination dual 1.5-MW HTS motors for electric propulsion

  • Le, T.D.;Kim, J.H.;Hyeon, C.J.;Kim, D.K.;Yoon, Y.S.;Lee, J.;Park, Y.G.;Jeon, H.;Quach, H.L.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.18 no.4
    • /
    • pp.25-29
    • /
    • 2016
  • The high temperature superconducting (HTS) contra-rotating propulsion (CRP) systems comprise two coaxial propellers sited on behind the other and rotate in opposite directions. They have the hydrodynamic advantage of recovering the slipstream rotational energy which would otherwise be lost to a conventional single-screw system. However, the cooling systems used for HTS CRP system need a high cooling power enough to maintain a low temperature of 2G HTS material operating at liquid neon (LNe) temperature (24.5 - 27 K). In this paper, a single thermo-syphon cooling approach using a Gifford-McMahon (G-M) cryo-cooler is presented. First, an optimal thermal design of a 1.5 MW HTS motor was conducted varying to different types of commercial 2G HTS tapes. Then, a mono-cryogenic cooling system for an integration of two 1.5 MW HTS motors will be designed and analyzed. Finally, the 3D finite element analysis (FEA) simulation of thermal characteristics was also performed.

Characterization of Atmospheric Dispersion Pattern from Large Sources in Chungnam, Korea (충남지역 대형사업장의 대기오염물질 확산 특성 파악)

  • Choi, Woo Yeong;Park, Min Ha;Jung, Chang Hoon;Kim, Yong Pyo;Lee, Ji Yi
    • Particle and aerosol research
    • /
    • v.17 no.3
    • /
    • pp.55-69
    • /
    • 2021
  • Chungnam region accounts for the largest SOX (22.8%) emission with the second-largest NOX (10.8%) emission in Korea due to the integration of many large industrial sources including a steel mill, coal-fired power plants, and petrochemical complex. Air pollutants emitted by large industrial sources can cause harmful problems to humans and the environment. Thus, it is necessary to understand dispersion patterns of air pollutants from large industrial sources in Chungnam to characterize atmospheric contamination in Chungnam and the surrounding area. In this study, seasonal atmospheric dispersion characteristics for SOX, NOX, and PM2.5 from ten major point sources in Chungnam were evaluated using HYSPLIT 4 model, and their contributions to SO2, NO2 concentrations in the regions near the source areas were estimated. The predictions of the HYSPLIT 4 model show a seasonal different dispersion pattern, in which air pollutants were dispersed toward the southeast in winter while, northeast in summer. In summer, due to weaker wind speed, air pollutants concentrations were higher than in winter, and they were dispersed to the metropolitan area. The local emissions of air pollutants in Taean area had a greater influence on the ambient SO2 and NO2 concentrations at Taean, whereas SOX and NOX emissions from large sources located at Seosan showed relatevely little effect on the ambient ambient SO2 and NO2 concentrations at Seosan.

The Comparative Study on the Cosmic Life as the Inter-Relational Metaphor of the Ultimate Reality in East and West (서양의 영(Spirit)과 동양의 기철학과의 대화 : 내적 관계성의 메타포와 우주적 생명을 중심으로)

  • Shin, Eun Hee
    • (The)Study of the Eastern Classic
    • /
    • no.32
    • /
    • pp.245-278
    • /
    • 2008
  • The purpose of this paper is to create an inter-religious dialogue between the Western Christian concept of the spirit and Eastern ch'i philosophy within the category of panentheism. The Hebrew term ruah means 'moving air' and 'wind' which derive from the particular experience of the ancient Hebrew people living in the desert. The Greek pnuema also means 'life' and 'wind' which denote the natural power. Both ruah and pneuma consist of the main idea of the spirit exploring the symbol of relationality of the divine in Western tradition. Eastern ch'i philosophy indicates a vital force for keeping the body and soul alive, which is unconscious and spontaneous. Ch'i as a vital force constitutes cosmogony and cosmology with the constant movement of yin and yang. Yin and Yang as representing earth and heaven are dynamic breaths, blending harmoniously to become all existence. The ethical implication of the inter-religious dialogue between the spirit and ch'i would be the integration and interconnection of heaven, earth, and human beings. The dialogue suggests becoming one body with nature and human community through embodying the non-dualistic spirit of life. The inter-relationality means that since all modalities of existence are made of the cosmic life, human beings are part of the divine cosmic process. This is related to degree of spirituality in the entire chain of being: rocks, trees, animals, humans, and goods represent different levels of spirituality based on the varying composition of the spirit and ch'i. All beings that internally embody with the spirit and ch'i are organically inter-connected, and they are integral part of a continuous process of transformation of life towards holistic liberation of human and nature community.