• Title/Summary/Keyword: Wind power generator blade

Search Result 74, Processing Time 0.027 seconds

Characteristics of Noise Emission from Wind Turbine Generator According to Methods of Power Regulation (파워 조절 방법에 따른 풍력 터번 발전기의 방사 소음 특성)

  • Jung, Sung-Soo;Cheung, Wan-Sup;Shin, Su-Hyun;Chun, Se-Jong;Choi, Yong-Moon;Cheong, Cheol-Ung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.941-945
    • /
    • 2006
  • In the development of electricity generating wind turbines for wind farm application, only two types have survived as the methods of power regulation; stall regulation and fun span pitch control. The sound measurement procedures of IEC 61400-11 are applied to field test and evaluation of noise emission from each of 1.5 MW and 660 kW wind turbine generators (WTG) utilizing the stall regulation and the pitch control for the power regulation, respectively. Apparent sound power level, wind speed dependence and third-octave band levels are evaluated for both of WTGs. It is found that while 1.5 MW WTG using the stall control is found to emit lower sound power than 660 kW one using the pitch control at low wind speed (below 8 m/s), sound power from the former becomes greater than that of the latter in the higher wind speed. Equivalent continuous sound pressure levels (ECSPL) of the stall control type of WTG vary more widely with wind speed than those of the pitch control type of WTG These characteristics are believed to be strongly dependent on the basic difference of the airflow around the blade between the stall regulation and the pitch control types of WTG. These characteristics according to the methods of power regulation lead to the very different noise emission characteristics of WTG depending on the seasons because the average wind speed in summer is lower than the critical velocity over which the airflow on the suction side of blade in the stall types of WT are separated. These results propose that, in view of environmental noise regulation, the developer of wind farm should give enough considerations to the choice of power regulation of their WTG based on the weather conditions of potential wind farm locations.

  • PDF

A Study on the Application of a Wind Power Generation System Using Outdoor Air on the Rooftop and Indoor Ventilation (건물 옥상외기와 실내배기를 활용한 풍력발전시스템 적용 연구)

  • Lee, Yong-Ho;Park, Jin-Chul;Hwang, Jung-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.1
    • /
    • pp.72-80
    • /
    • 2014
  • This study proposed a wind power generation system utilizing outdoor air on the rooftop and indoor ventilation, which would increase according to the building height, as a way to help to save energy consumption in a building by using wind power energy of the new renewable energy sources. The study measured the distribution of air currents and power generation according to the usage factor of exhaust pipes in the kitchen and bathroom and identified the elements to consider when applying a wind power generation system to buildings in order to use outdoor air on the rooftop increasing according to the height and the indoor ventilation produced in the facility vertical shafts inside the buildings by installing a wind power generation system on the rooftop. (1) The study measured the ventilation velocity of the kitchen hood and bathroom ventilation fan by changing the zone areas by the households according to the usage factor of [${\alpha}$]=33~100%. As a result, the kitchen ventilation pipe generated the ventilation wind of 3.0m/s or more at the usage factor of [${\alpha}$] 66% or higher, and the bathroom ventilation pipe generated ventilation velocity lower than 3.0m/s, the blade velocity of the wind power generator, even after the usage factor rose to [${\alpha}$]=100%. (2) As the old bathroom ventilation pipe generated the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, even with the rising usage factor [${\alpha}$], the application of an outdoor air induction module increased the ventilation velocity by 2.9m/s at the usage factor of [${\alpha}$]=33%, 3.8m/s at the usage factor of [${\alpha}$]=66%, and 3.6m/s at the usage factor of [${\alpha}$]=100%. Thus the ventilation velocity of 3.0m/s, the blade velocity of the wind power generator, or higher was secured. (3) The findings prove that the applicability of a wind power generation system using outdoor air on the rooftop and indoor ventilation is excellent, which raises a need for various efforts to increase the possibility of its commercialization such as securing its structural stability according to momentary gusts on the rooftop and typhoons in summer and making the structure light to react to the wind directions of outdoor air on the rooftop according to the seasons.

Nonlinear Pitch and Torque Controller Design for Wind Turbine Generator Using Lyapunov Function (리아프노프 함수를 이용한 풍력 발전기 비선형 피치 및 토크 제어기 설계)

  • Kim, Guk-Sun;No, Tae-Soo;Jeon, Gyeong-Eon;Kim, Ji-Yon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.10
    • /
    • pp.1147-1154
    • /
    • 2012
  • In this study, a method for designing blade pitch and generator torque controllers for a wind turbine generator is presented. This method consists of two steps. First, the Lyapunov stability theory is used to obtain nonlinear control laws that can regulate the rotor speed and the power output at all operating ranges. The blade pitch controller is chosen such that it always decreases a positive definite function that represents the error in rotor speed control. Similarly, the generator torque controller always decreases a positive definite function that reflects the error in power output control. Then, the simulation-based optimization technique is used to tune the design parameters. The controller design procedure and simulation results are presented using the widely adopted two-mass model of the wind turbine.

Development of the wind generation output stabilization with Lithium-ion battery (리티움-이온 배터리를 이용한 풍력발전의 출력안정화 시스템 개발)

  • Oh, Seung-Jin;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2010.07a
    • /
    • pp.178-179
    • /
    • 2010
  • This paper presents a simulation model and analysis of grid-tied wind turbine generator with batteries using the PSCAD/EMTDC software. The modeled system is consist of two inverters and one bidirectional DC/DC converter. These inverter are to capture the maximum active power under varying wind conditions and to keep the DC-Link voltage magnitude at a specific level. And the bidirectional DC/DC converter makes battery charging or discharging depend on power gap between wind turbine output and local load. Aerodynamic models are applied for a wind turbine blade simulator.

  • PDF

Starting Characteristics of Darrieus Wind Turbine (다리우스 풍력터빈 발전기의 기동특성)

  • Lee, Kyu-Yong;Lee, Woo-Suk;Seo, Young-Teak;Oh, Chul-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2003.07b
    • /
    • pp.1018-1020
    • /
    • 2003
  • Wind-powered generator system converts wind energy into utilized electric energy. Wind power generator is classified into two categories, as horizontal or vertical axis turbine. The former is equipped with yawing mechanism which is subject to set the blade-face towards the wind direction. However, the latter does not need this mechanism, but this system needs a external power for starting. This paper deals with the method how to overcome such trouble and with the analysis of the starting characteristic and a field test with a prototype of the Darrieus wind generator was performed.

  • PDF

A Study on the Parallel Operation Strategy of Small Wind Turbine System for Battery Charging (배터리 충전을 위한 소형풍력 발전 시스템의 병렬 운전방안에 관한 연구)

  • Son, Yung-Deug;Ku, Hyun-Keun;Kim, Jang-Mok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.6
    • /
    • pp.549-556
    • /
    • 2014
  • This study proposes a parallel operation strategy for small wind turbine systems. A small wind turbine system consists of blade, permanent magnet synchronous generator, three-phase diode rectifier, DC/DC buck converter, and the battery load. This configuration has reliability, simple control algorithm, high efficiency, and low cost. In spite of these advantages, the system stops when unexpected failures occur. Possible failures can be divided into mechanical and electrical parts. The proposed strategy focuses on the failure of electrical parts, which is verified by numerical analysis through equivalent circuit and acquired general formula of small wind power generation systems. Simulation and experimental results prove its efficiency and usefulness.

An Airborne Cycloidal Wind Turbine Mounted Using a Tethered Balloon

  • Hwang, In-Seong;Kang, Wang-Gu;Kim, Seung-Jo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.4
    • /
    • pp.354-359
    • /
    • 2011
  • This study proposes a design for an airborne wind turbine generator. The proposed system comprises a cycloidal wind turbine adopting a cycloidal rotor blade system that is used at a high altitude. The turbine is mounted on a tethered balloon. The proposed system is relatively easier to be realized and stable. Moreover, the rotor efficiency is high, which can be adjusted using the blade pitch angle variation. In addition, the rotor is well adapted to the wind-flow direction change. This article proves the feasibility of the proposed system through a sample design for a wind turbine that produces a power of 30 kW. The generated wind power at 500 m height is nearly 3 times of that on the ground.

Study of Optimal Design Parameter for Gearbox on Wind Power System (풍력발전시스템용 증속기의 최적화 설계요소에 관한 연구)

  • 이근호;성백주;최용혁
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.737-741
    • /
    • 2003
  • The wind power system is spotlighted as one of the no-pollution power generation systems. The system uses winds as power source that are rotated the blade and the rotating power from blade generate the electricity power. Gearbox needs to transfer the wind powers that have the high-torque-low-speed characteristics to generator that have the low-torque-high-speed characteristics. Because the wind power system generally locates the remote place like seaside or mountainside and the gearbox installs on the limited and high placed space, the gearbox of the wind power system is required the optimal space design and high reliability. In this paper, the structure of the gearbox is proposed to achieve the optimal space and efficiency by compounding the planetary gear train that has the high power density and parallel type gear train that has the long service life. The design parameters that are affected the service life are studied. The gear ratio and face width are investigated as an affected parameter for design sensitivity of service life.

  • PDF

A Wind Turbine Simulator with Variable Torque Input (풍력 터빈 모의 실험을 위한 가변 토오크 입력형 시뮬레이터)

  • Jeong, Byeong-Chang;Song, Seung-Ho;No, Do-Hwan;Kim, Dong-Yong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.8
    • /
    • pp.467-474
    • /
    • 2002
  • In this paper, a wind power simulator is designed and implemented. To realize the torque of wind blade, a DC motor is used as a variable torque input device. An induction machine is used as a generator of which speed is controlled to maintain the optimal tip speed ratio during wind speed change. Input torque of system is controlled by armature current of DC motor and speed is controlled by generator control unit using field oriented control algorithm. Various control algorithms such as MPPT, soft start up, the simulator reactive power control, can be developed and tested using the simulator.

Modeling and Speed Control of a Horizontal Axis Wind Generator (수평축 풍력발전기의 모델링 및 속도제어)

  • Lim, J.H.;Boo, S.H.;Huh, J.C.;Kim, K.H.
    • Solar Energy
    • /
    • v.20 no.1
    • /
    • pp.1-9
    • /
    • 2000
  • Wind turbine system converts wind energy into electric energy. Since the velocity of wind is random in nature, control of the angular velocity of the blade is necessary in order to generate high quality electric power. The control of a blade can be divided into a stall regulation and a pitch control types. The stall regulation type which is based on the characteristics of an aerodynamic stall of the blades is simple and cheap, but it suffers from fluctuation of the resulting power. Or the contrary, pitch control type is based on the fact that the torque of the blade can be changed by varying the pitch angle of the blade. It is mechanically and mathematically complicated, but the control performance is better than that of the stall regulation type. This paper suggests a method of denying a mathematical modeling of the wind turbine system, and develops a speed control algorithm by pitch control. The validity of the algorithm is demonstrated with the results produced through sets of simulation.

  • PDF