• Title/Summary/Keyword: Wind field

Search Result 1,611, Processing Time 0.028 seconds

An Evaluation of Thermal Comfort of New Towns in Seoul Metropolitan Area (수도권 신도시의 열쾌적성 평가)

  • Oh, Kyu Shik;Lee, Min Bok;Lee, Dong Woo
    • Spatial Information Research
    • /
    • v.21 no.2
    • /
    • pp.55-71
    • /
    • 2013
  • This study assessed the thermal comfort of new towns in the Seoul Metropolitan Area (Ilsan, Bundang, Dongtan1) using PET (Physiologically Equivalent Temperature) which refers to real human heat stress. The relationship between PET and urban spatial elements was also analyzed using multiple regression analysis. The study results show that the thermal comfort of Dongtan 1, which is considering a reduction of the urban heat island effect in the planning phase, is higher than other cities. In addition, through regression results, the impervious ratio, floor area ratio, commercial area ratio, and residential area ratio were found to be major factors increasing PET. Moreover, the river area ratio and NDVI were found to be major factors decreasing PET. This study has scientific significance as research that focuses on the assessment of thermal comfort scientifically and definitely, by estimating PET for an entire urban area using GIS analysis that included remote sense analysis and the wind field model. The results of this study can be used in preparing more effective urban plans for the promotion of citizen thermal comfort.

Agroforestry Strategies Reflecting Residents' Attitudes in a Semi-arid Region - Focusing on Elsentasarhai Region in Mongolia - (주민의식을 반영한 반건조지역의 산림농업 전략 - 몽골 엘센타사라이 지역을 중심으로 -)

  • Jo, Hyun-Kil;Park, Hye-Mi;Kim, Jin-Young
    • Korean Journal of Environment and Ecology
    • /
    • v.28 no.2
    • /
    • pp.263-269
    • /
    • 2014
  • This study explored agroforestry strategies to achieve ecological and economic effects simultaneously for Elsentasarhai region in Mongolia under desertification, based on attitude survey with a questionnaire, field survey on planting sites, and literature review. The agrosilvopastoral approach was suggested as a type of agroforestry practices which combined tree planting for combatting desertification and wind damage to crops, agricultural crop production for income improvement, and livestock raising, a major industry in the study region. Populus sibirica and Ulmus pumila native to desert regions were selected for tree planting, and Hippophae rhamnoides, potato, and fodder appropriate for the short growing season were chosen for income crop production, reflecting residents' attitudes and growth environments. As a strategy of land allocation to satisfy multiple effects of the agrosilvopastoral approach, the alley cropping technique was recommended which arranged alternately strips of trees as windbreaks and income crops in multiple rows. The study also explored desirable planting techniques to improve conditions of income crop production and tree growth against drought and strong winds in the alley cropping. Study results will be useful as fundamental information to implement sustainable agroforestry in Mongolia and other semi-arid regions where knowledge concerned is lacking.

Effect of phosphorus application on appearance of algal water bloom and rice yield in rice-barley double cropping system

  • Hwang, Jae-Bok;Bae, Hee-Soo;Park, Tae-Seon;Choi, In-Bae
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.233-233
    • /
    • 2017
  • Algal communities are important to maintain the aquatic ecosystems function. Algae have short life cycles, they respond quickly to environmental change and their diversity and density can indicate and the quality of their habitat. The bloom forms before the rice seedings have emerged, it may present a physical barrier that prevents the seedlings from penetrating the floodwater. Wind may also move the algal bloom, pushing the young plants beneath the surface. Another harmful action develops when the water dries up and the algae form a layer at the bottom of the field. The layer envelops the seedlings, which are not yet deeply rooted, and drag them to the surface when the water is let in again. Soil utilization pattern can be the mail facter affecting soil physico-chemical properties, especially in soil phosphorus (P). Solid content of the algae culture solution increased with the increase in the nitrogen rather the phosphors concentration. Phosphoric acid was treated with conventional treatments (100-0%, before transplanting time-tillering stage), 50-50%, 0-100%, and un-treated. The herbicide was treated on the 7 DAT (day after transplanting). Green algae samples were collected 20 DAT. Total phosphoric acid was the highest at 0.06 in 50-50% treatment in 20 DAT. The amount of green algae was about twice (9.8 mg/20ml) that of un-treated. Total number of green algae was 54 species(Green algae 35 species, Euglena 9 species, Stone wheel 10 species). Among the phosphoric acid treatment methods, the number of occurrences of green algae were the highest with 39 species in 0-100%, followed by 50-50%, 28 species, conventional treatments, 22 species, non-treatment, 18 species, respectively. Rice Yield was not significantly different by phosphoric treatment time, but slightly higher than un-treated. The maximal algal biomass was observed about 2weeks or 1 month after transplanting; the subsequent decrease of the biomass was related to the consumption by grazers and to a deficient light under the rice canopy. Maximal algal growth was observed just before tillering. To estimate the suitable method of phosphorus application in puddled-soil drill seeding of rice, available phosphorus appearance of algal water bloom, and rice yield were investigated in paddy soil of rice-barley double cropping system.

  • PDF

Soil Erosion Assessment Tool - Water Erosion Prediction Project (WEPP) (토양 침식 예측 모델 - Water Erosion Prediction Project (WEPP))

  • Kim, Min-Kyeong;Park, Seong-Jin;Choi, Chul-Man;Ko, Byong-Gu;Lee, Jong-Sik;Flanagan, D.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.235-238
    • /
    • 2008
  • The Water Erosion Prediction Project (WEPP) was initiated in August 1985 to develop new generation water erosion prediction technology for federal agencies involved in soil and water conservation and environmental planning and assessment. Developed by USDA-ARS as a replacement for empirical erosion prediction technologies, the WEPP model simulates many of the physical processes important in soil erosion, including infiltration, runoff, raindrop detachment, flow detachment, sediment transport, deposition, plant growth and residue decomposition. The WEPP included an extensive field experimental program conducted on cropland, rangeland, and disturbed forest sites to obtain data required to parameterize and test the model. A large team effort at numerous research locations, ARS laboratories, and cooperating land-grant universities was needed to develop this state-of-the-art simulation model. The WEPP model is used for hillslope applications or on small watersheds. Because it is physically based, the model has been successfully used in the evaluation of important natural resources issues throughout the United State and in several other countries. Recent model enhancements include a graphical Windows interface and integration of WEPP with GIS software. A combined wind and water erosion prediction system with easily accessible databases and a common interface is planned for the future.

A Calculation Method of in vivo Energy Consumption in Estimation of Harvesting Date for High Potato Solids (고 고형분함량 감자의 수확시기 예측모형을 위한 식물체내 에너지 소모량 추정)

  • Jung, Jae-Youn;Suh, Sang-Gon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.55 no.4
    • /
    • pp.284-291
    • /
    • 2010
  • A simulation modeling for predicting the harvesting date with high potato solids consists of development of mathematical models. The mathematical model on potato growth and its development should be obtained by using agricultural elements which analyze relations of solar radiation quantity, temperature, photon quantity, carbon dioxide exchange rate, water stress and loss, relative humidity, light intensity, and wind etc. But more reliable way to predict harvesting date against climatic change employs in vivo energy consumption for growth and induction shape in a slight environmental adaptation. Therefore, to calculate in vivo energy loss, we take a concept of estimate of the amount of basal metabolism in each tuber on the basis of $Wm={\int}^m_tf(x)dt$ and $Tp=\frac{Tm{\cdot}Wm^{Tp}}{Wm^{Tm}}$. In the validation experiments, results of measuring solid accumulation of potato harvested at simulated date agreed fairly well with the actual measured values in each regional field during the growth period of 2005-2009. The calculation method could be used to predict an appropriate harvesting date for a production of high potato solids according to weather conditions.

A Study on the Statistical Characteristics and Numerical Hindcasts of Storm Waves in East Sea (동해 폭풍파랑의 통계적 특성과 파랑 후측모의 실험에 관한 연구)

  • Chun, Hwusub;Kang, Tae-Soon;Ahn, Kyungmo;Jeong, Weon Mu;Kim, Tae-Rim;Lee, Dong Hwan
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.2
    • /
    • pp.81-95
    • /
    • 2014
  • In the present study, the statistical analysis on the storm waves in the East Sea have been carried out, and the several storm waves were reproduced by the modified WAM as a first step for the accurate and prompt forecasting and warning against the swell waves in East Sea. According to the present study, the occurrences of the storm waves from the North were the most probable, while the waves from the Northeast were most frequently observed. It was found that the significant wave heights of storm waves from the North and Northern northeast were larger than those of storm waves from the Northeast. But due to long fetch distance, the significant wave periods of storm waves from the Northesast were longer than those of North and Northern northeast. In addition to the wave analysis, the numerical experiments for the storm waves in East Sea were carried out using the modified WAM, and three periods of storm waves in 2013 were calculated. The numerical results were well agreed with wave measurements. However the numerical simulation results in shallow water region showed lower accuracies compared to deep water, which might be due to lower resolution of wind field and bottom topography caused by large grid size, 5 minute, adopted in the present study. Overall computational efficiency of the modified WAM found to be excellent compared to original WAM. It is because the modified WAM adopted the implicit scheme, thereby the present model performed 10 time faster than original WAM in computation time.

A Impact Analysis of Air Quality by Air Pollution Control Facilities Improvement on Point Source Pollution (점오염원의 대기오염방지시설 개선에 의한 대기질 영향 분석)

  • Jeon, Byeong-Geun;Lee, Sang-Houck
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.4
    • /
    • pp.2876-2882
    • /
    • 2015
  • The object of this study is to identify changes in air pollution in the maximum ground level concentration and the surrounding area when air pollution control facilities are improved in the thermal power plants. The effects of improved facilities are analyzed by comparing air quality after applying improved air pollution control facilities. For prediction of air quality, the change of wind field can be represented with movement of Puff and CALPUFF Model, air pollution diffusion models which can implement abnormal conditions. Major air pollutants of thermal power plants such as $SO_2$, $NO_2$, and $PM_{10}$ are selected as prediction items. That results show that improvement of air pollution control facilities is significantly effective in reduction of air pollution of $SO_2$ and $NO_2$ in the maximum ground level concentration and areas around of thermal power plants. In the case of $PM_{10}$, it is found that the effect of reduction in pollution is high in the maximum ground level concentration, but the effect of reduction in air pollution is somewhat low in the area around of the thermal power plant.

Automatic Detection Approach of Ship using RADARSAT-1 Synthetic Aperture Radar

  • Yang, Chan-Su
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.2
    • /
    • pp.163-168
    • /
    • 2008
  • Ship detection from satellite remote sensing is a crucial application for global monitoring for the purpose of protecting the marine environment and ensuring marine security. It permits to monitor sea traffic including fisheries, and to associate ships with oil discharge. An automatic ship detection approach for RADARSAT Fine Synthetic Aperture Radar (SAR) image is described and assessed using in situ ship validation information collected during field experiments conducted on August 6, 2004. Ship detection algorithms developed here consist of five stages: calibration, land masking, prescreening, point positioning, and discrimination. The fine image was acquired of Ulsan Port, located in southeast Korea, and during the acquisition, wind speeds between 0 m/s and 0.4 m/s were reported. The detection approach is applied to anchoring ships in the anchorage area of the port and its results are compared with validation data based on Vessel Traffic Service (VTS) radar. Our analysis for anchoring ships, above 68 m in length (LOA), indicates a 100% ship detection rate for the RADARSAT single beam mode. It is shown that the ship detection performance of SAR for smaller ships like barge could be higher than the land-based radar. The proposed method is also applied to estimate the ship's dimensions of length and breadth from SAR radar cross section(RCS), but those values were comparatively higher than the actual sizes because of layover and shadow effects of SAR.

  • PDF

Study on the Prediction of Surface Color Change of Cultural Properties Materials by Fog Occurrence (안개 발생에 따른 문화재 표면의 색 변화 예측 연구)

  • Han, Ye Bin;Park, Sang Hyeon;Yu, Ji A;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.32 no.4
    • /
    • pp.491-500
    • /
    • 2016
  • Fog is atmospheric in which tiny drops of water vapor are suspended in the air near the ground. Its form, occurrence, etc., change according to the temperature, relative humidity, wind and geographical features of the space around it. In particular, fog tends to occur near a source of water because of temperature and relative humidity difference. These days, climate change is increasingly affecting the occurrence of fog. Therefore the purpose of this study was to investigate how fog affects materials that are part of our cultural properties through outdoor exposure tests and artificial degradation. The degradation evaluation of materials as a function of fog occurrence frequency, showed that the color of metals changed noticeably, whereas dyed silk and Dancheong showed degradation on the surface and color differences but no particular tendencies. Therefore, damage prediction by color differences as a function of fog occurrence frequency was based on metal samples, which showed constant color differences. Through a comparison of the predictive value and color difference by outdoor exposure, the accuracy and applicability of the damage prediction formula was confirmed. If a more complex damage prediction formula is created, it is expected that prediction of the degree of material damage in the field would be possible.

Feed System Modeling of Railroad using Fuel Cell Power Generation System (연료전지 발전시스템을 이용한 철도급전계통 모델링)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.195-200
    • /
    • 2020
  • With the growing interest in fossil fuel depletion and environmental pollution, railroad cars operating in Korea are in progress as the conversion from diesel to electric vehicles expands. The photovoltaic system, which is applied as an example of the conversion of electric vehicles, is infinite and pollution-free, and can produce energy without generating hazards such as air pollution, noise, heat, and vibration, and maintain fuel transportation and power generation facilities. There is an advantage that is rarely needed. However, the amount of electricity produced depends on the amount of solar radiation by region, and the energy density is low due to the power generation of about 25㎡/ kWp, so a large installation area is required and the installation place has limited problems. In view of these problems, many studies have been applied to fuel cells in the railway field. In particular, the plan to link the fuel cell power generation system railroad power supply system must be linked to the power supply system that supplies power to the railroad, unlike solar and wind power. Therefore, it has a close relationship with railroad cars and the linkage method can vary greatly depending on the system topology. Therefore, in this paper, we study the validity through simulation modeling related to linkage analysis according to system topology.