• 제목/요약/키워드: Wind disturbances

검색결과 102건 처리시간 0.026초

GROUND LEVEL ENHANCEMENTS IN RELATION WITH ENERGETIC SOLAR FEATURES AND DISTURBANCES IN SOLAR WIND PLASMA PARAMETERS

  • VERMA, PYARE LAL
    • 천문학논총
    • /
    • 제30권2호
    • /
    • pp.47-51
    • /
    • 2015
  • Ground Level Enhancements (GLEs) in cosmic ray intensity observed during the period of 1997-2012 have been studied with energetic solar features and disturbances in solar wind plasma parameters and it is seen that all the GLEs have been found to be associated with coronal mass ejections, hard X-ray solar flares and solar radio bursts. All the GLEs have also been found to be associated with sudden jumps in solar proton flux of energy of ${\geq}60Mev$. A positive correlation with correlation coefficient of 0.48 has been found between the maximum percentage intensity (Imax%) of Ground Level Enhancements and the peak value of solar proton flux of energy (${\geq}60Mev$). All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma velocity (JSWV) events. A positive correlation with correlation coefficient of 0.43 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma velocity of associated (JSWV) events. All the Ground Level Enhancements have been found to be associated with jumps in solar wind plasma pressure (JSWP) events. A positive correlation with correlation coefficient of 0.67 has been found between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the peak value of solar wind plasma pressure of associated (JSWP) events and of 0.68 between the maximum percentage intensity (Imax %) of Ground Level Enhancements and the magnitude of the jump in solar wind plasma pressure of associated (JSWP) events.

Influence of wind disturbance on smart stiffness identification of building structure using limited micro-tremor observation

  • Koyama, Ryuji;Fujita, Kohei;Takewaki, Izuru
    • Structural Engineering and Mechanics
    • /
    • 제56권2호
    • /
    • pp.293-315
    • /
    • 2015
  • While most of researches on system identification of building structures are aimed at finding modal parameters first and identifying the corresponding physical parameters by using the transformation in terms of transfer functions and cross spectra, etc., direct physical parameter system identification methods have been proposed recently. Due to the problem of signal/noise (SN) ratios, the previous methods are restricted mostly to earthquake records or forced vibration data. In this paper, a theoretical investigation is performed on the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors. It is concluded that the influence of wind disturbances on stiffness identification of building structures using micro-tremor at limited floors is restricted in case of using time-series data for low-rise buildings and does not cause serious problems.

풍하중을 받는 벤치마크 구조물의 진동제어를 위한 외란 예측기가 포함된 슬라이딩 모드 퍼지 제어 (Application of Sliding Mode Fuzzy Control with Disturbance Estimator to Benchmark Problem for Wind Excited Building)

  • 김상범;윤정방;구자인
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2000년도 춘계학술대회논문집
    • /
    • pp.246-250
    • /
    • 2000
  • A distinctive feature in vibration control of a large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. The sliding mode fuzzy control (SMFC), which is of interest in this study, may use not only the structural response measurement but also the wind force measurement. Hence, an adaptive disturbance estimation filter is introduced to generate a wind force vector at each time instance based on the measured structural response and the stochastic information of the wind force. The structure of the filter is constructed based on an auto-regressive with auxiliary input model. A numerical simulation is carried out on a benchmark problem of a wind-excited building. The results indicate that the overall performance of the proposed SMFC is as good as the other methods and that most of the performance indices improve as the adaptive disturbance estimation filter is introduced.

  • PDF

무인항공기의 내풍성 강화를 위한 제어기의 외란관측기 연구 (Disturbance Observer based PID Controller for robustness enhancement of UAVs under the presence of wind disturbance)

  • 오승조;이동진
    • 한국항공운항학회지
    • /
    • 제26권2호
    • /
    • pp.61-67
    • /
    • 2018
  • This paper presents a method to apply disturbance observer to PID controller for robustness enhancement of UAVs. The system uncertainties and disturbances bring adverse effects on performance and stability of UAVs. In this paper, we estimate the acceleration disturbances using nonlinear disturbance observer, then compensate disturbances with composite controller. By employing nonlinear disturbance observer and composite controller, we have better performance and robustness than conventional PID controller. The asymptotical stability of nonlinear disturbance observer is presented through theoretical analysis. The estimation performance of nonlinear disturbance observer is evaluated by numerical simulation. And performance of disturbance observer based PID controller is evaluated by comparing the performance with conventional PID controller.

Sliding Mode Fuzzy Control을 사용한 바람에 의한 대형 구조물의 진동제어 (Sliding Mode Fuzzy Control for Wind Vibration Control of Tall Building)

  • 김상범;윤정방
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2000년도 추계학술대회 논문집
    • /
    • pp.79-83
    • /
    • 2000
  • A sliding mode fuzzy control (SMFC) with disturbance estimator is applied to design a controller for the third generation benchmark problem on an wind-excited building. A distinctive feature in vibration control of large civil infrastructure is the existence of large disturbances, such as wind, earthquake, and sea wave forces. Those disturbances govern the behavior of the structure, however, they cannot be precisely measured, especially for the case of wind-induced vibration control. Since the structural accelerations are measured only at a limited number of locations without the measurement of the wind forces, the structure of the conventional control may have the feed-back loop only. General structure of the SMFC is composed of a compensation part and a convergent part. The compensation part prevents the system diverge, and the convergent part makes the system converge to the sliding surface. The compensation part uses not only the structural response measurement but also the disturbance measurement, so the SMFC has a feed-back loop and a feed-forward loop. To realize the virtual feed-forward loop for the wind-induced vibration control, disturbance estimation filter is introduced. the structure of the filter is constructed based on an auto regressive model for the stochastic wind force. This filter estimates the wind force at each time instance based on the measured structural responses and the stochastic information of the wind force. For the verification of the proposed algorithm, a numerical simulation is carried out on the benchmark problem of a wind-excited building. The results indicate that the present control algorithm is very efficient for reducing the wind-induced vibration and that the performance indices improve as the filter for wind force estimation is employed.

  • PDF

UAV Autopilot Design under External Disturbances

  • Eun, Youn-Ju;Hyochoong Bang;Tahk, Min-Jea
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.40.3-40
    • /
    • 2002
  • Unmanned Aerial Vehicle(UAV) needs autonomous flight capability to accomplish various mission objectives. For this objective, the autopilot is a key element in the UAV system design. The principal goal of autopilot is to guide the aircraft under varying external disturbances throughout the mission phases. The external disturbances include gravity effect, wind gust, and other unexpected obstacles. The gust affects the aircraft flight performance to a significant extent. UAV's low speed, light weight, and the absence of human judgment makes un predictable gust more dangerous. Autopilot design in general takes the gust effect into account to satisfy flight performance requirement. In this study..

  • PDF

Parametric study of ICME properties affecting space weather disturbances at 1 AU

  • An, Junmo;Magara, Tetsuya;Hayashi, Keiji;Moon, Yong-Jae
    • 천문학회보
    • /
    • 제44권2호
    • /
    • pp.40.4-40.4
    • /
    • 2019
  • Interplanetary coronal mass ejections (ICMEs) are regarded as one of the most powerful sources of space weather disturbances observed near the Earth orbit (1 AU). In this study, we aim at investigating the relation between these disturbances and the physical properties of an ICME. Toward this end, we used an spheromak-type ICME and performed a series of three-dimensional magnetohydrodynamic (MHD) simulations with different sets of ICME parameters. The ICME is injected into the background solar wind generated from near-Sun data and interplanetary scintillation (IPS) data via an MHD-IPS tomography method. We will compare simulation results to in situ observations near the Earth and discuss how the physical properties of an ICME affect the space weather disturbances at 1 AU.

  • PDF

Simulink에서 계통연계 풍력발전시스템의 전압변동 시뮬레이션 (Simulation for Voltage Variations of a Grid-connected Wind Turbine Generation System by Simulink)

  • 안덕근;노경수
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권11호
    • /
    • pp.589-595
    • /
    • 2004
  • This paper presents a modeling and simulation of a grid-connected wind turbine generation system with respect to wind variations, starting of large induction motor and three-phase fault in the system, and investigates voltage variations of the system for disturbances. It describes the modeling of the wind turbine system including the drive train model, induction generator model, and grid-interface model on MATLAB/Simulink. The simulation results show the variation of the generator torque, the generator rotor speed, the pitch angle, terminal voltage, system voltage, fault current, and real/reactive power output, etc. Case studies demonstrate that the pitch angle control is carried out to achieve maximum power extraction for wind speed variations, starting of a large induction motor causes a voltage sag due to a large starting current, and a fault on the system influences on the output of the wind turbine generator.