• Title/Summary/Keyword: Wind direction

Search Result 1,415, Processing Time 0.028 seconds

Applying a big data analysis to evaluate the suitability of shelter locations for the evacuation of residents in case of radiological emergencies

  • Jin Sik Choi;Jae Wook Kim;Han Young Joo;Joo Hyun Moon
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.261-269
    • /
    • 2023
  • During a nuclear power plant (NPP) accident, radioactive material may be released into the surrounding environment in the form of a radioactive plume. The behavior of the radioactive plume is influenced by meteorological factors such as wind direction and speed. If the residents are evacuated to a shelter in the direction of the flow of the radioactive plume, the radiation exposure of the residents may increase, contrary to the purpose of the evacuation. To avoid such an undesirable outcome, this paper applies a big data analysis to evaluate the suitability of the shelter locations near 5 NPPs in the Republic of Korea in terms of the seasonal wind direction frequency in those areas. To this end, the wind data measured around the NPPs from 2016 to 2020 were analyzed to derive the seasonal wind direction frequency using a big data analysis. These analyses results were then used to determine how many shelters around NPPs locate in areas with prevailing wind direction per season. Then, suggestions were made on the direction for residents not to evacuate, if possible, that is, the prevailing seasonal wind directions for 5 NPPs, depending on the season in which the accident occurs.

Characteristics of Wind Direction Shear and Momentum Fluxes within Roughness Sublayer over Sloping Terrain (경사가 있는 지형의 거칠기 아층에서 풍향시어와 운동량 플럭스의 특성)

  • Lee, Young-Hee
    • Atmosphere
    • /
    • v.25 no.4
    • /
    • pp.591-600
    • /
    • 2015
  • We have analyzed wind and eddy covariance data collected within roughness sublayer over sloping terrain. The study site is located on non-flat terrain with slopes in both south-north and east-west directions. The surface elevation change is smaller than the height of roughness element such as building and tree. This study examines the directional wind shear for data collected at three levels in the lowest 10 m in the roughness sublayer. The wind direction shear is caused by drag of roughness element and terrain-induced motions at this site. Small directional shear occurs when wind speed at 10 m is strong and wind direction at 10 m is southerly which is the same direction as upslope flow near surface at this site during daytime. Correlation between vertical shear of lateral momentum and lateral momentum flux is smaller over steeply sloped surface compared to mildly sloped surface and lateral momentum flux is not down-gradient over steeply sloped surface. Quadrant analysis shows that the relative contribution of four quadrants to momentum flux depends on both surface slope and wind direction shear.

Influences of Ieodo Ocean Research Station on the Ambient Wind Field (이어도 해양과학기지가 주변 바람장에 미치는 영향)

  • 심재설;오병철;전인식
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.2
    • /
    • pp.138-142
    • /
    • 2003
  • Influences of Ieodo Ocean Research Station(IORS) on the ambient wind field were investigated through a wind tunnel experiment. To secure accurate wind speeds and directions, distortions due to the structure itself on which wind-measuring devices are to be installed should be taken into account. It was shown that the wind speed ratio was sensitive to wind direction and measuring position rather than approaching wind speed. The wind speed ratios measured at main wind tower were more than B .0 in every approaching direction, and the distortion of wind direction was under 6$^{\circ}$.

Load Ratio between Two Adjacent Wings of Load Cell Type Anemometer according to Wind Direction (풍향에 따른 로드 셀형 풍향풍속계의 인접한 두 날개 사이의 하중 비)

  • Han, Dong-Seop
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.357-361
    • /
    • 2012
  • Anemometer is a meteorological instrument that measures wind direction and wind speed in real time, and is mounted to the cranes that are used at ports, shipbuilding yards, off-shore structure, or construction sites that are influenced by wind, and it is used in conjunction with the safety system. Load cell-type anemometer measures the wind direction through the ratio of load between 4 positions by mounting the thin plate to 4 load cells, and measures wind velocity through the summation of loads. In this study, we compared and analyzed the results in the theoretic approach, analytic approach and experimental approach to derive the correlation between load ratio and wind direction. Wind direction was selected as the design variable, and selected 9 wind direction conditions from $0^{\circ}{\sim}90^{\circ}$ with $11.25^{\circ}$ space for analysis, and 10 wind direction conditions with $10^{\circ}$ space for experiment.

Estimation of Sea Surface Wind Speed and Direction From RADARSAT Data

  • Kim, Duk-Jin;Wooil-M. Moon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.485-490
    • /
    • 1999
  • Wind vector information over the ocean is currently obtained using multiple beam scatterometer data. The scatterometers on ERS-1/2 generate wind vector information with a spatial resolution of 50km and accuracies of $\pm$2m/s in wind speed and $\pm$20$^{\circ}$ in wind direction. Synthetic aperture radar (SAR) data over the ocean have the potential of providing wind vector information independent of weather conditions with finer resolution. Finer resolution wind vector information can often be useful particularly in coastal regions where the scatterometer wind information is often corrupted because of the lower resolution system characteristics which is often contaminated by the signal returns from the coastal areas or ice in the case of arctic environments. In this paper we tested CMOD_4 and CMOD_IFR2 algorithms for extracting the wind vector from SAR data. These algorithms require precise estimation of normalized radar cross-section and wind direction from the SAR data and the local incidence angle. The CMOD series algorithms were developed for the C-band, VV-Polarized SAR data, typically for the ERS SAR data. Since RADARSAT operates at the same C-band but with HH-Polarization, the CMOD series algorithms should not be used directly. As a preliminary approach of resolving with this problem, we applied the polarization ratio between the HH and VV polarizations in the wind vectors estimation. Two test areas, one in front of Inchon and several sites around Jeju island were selected and investigated for wind vector estimation. The new results were compared with the wind vectors obtained from CMOD algorithms. The wind vector results agree well with the observed wind speed data. However the estimation of wind direction agree with the observed wind direction only when the wind speed is greater than approximately 3.0m/s.

  • PDF

Distribution of Wind Force Coefficients on the Three-span Arched House (아치형 3연동하우스의 풍력계수 분포에 관한 연구)

  • 이현우;이석건
    • Journal of Bio-Environment Control
    • /
    • v.2 no.1
    • /
    • pp.46-52
    • /
    • 1993
  • The wind pressure distributions were analyzed through the wind tunnel experiment to provide fundamental criteria for the structural design on the three-span arched house according to the wind directions. In order to investigate the wind force distribution, the variation of the wind force coefficients, the mean wind force coefficients, the drag force coefficients and the lift force coefficients were estimated from the experimental data. The results obtained are as follows : 1. The variation of the wind force with the wind directions on the side walls was the greatest at the upwind edge of the walls. The change of pressure from the positive to the negative on the side walls occurred at the wind direction of 30$^{\circ}$ in the first house and 60$^{\circ}$ in the third house. 2. The maximum negative wind force along the length of the roof appeared at the length ratio of 0-0.2, when the wind directions were 90$^{\circ}$ in the first house, 60$^{\circ}$ in the second house and 30$^{\circ}$ in the third house. 3. The maximum negative wind force along the width of the roof appeared at the width ratio and the wind direction of 0.4 and 0$^{\circ}$ in the first house, 0.4-0.6 and 30$^{\circ}$ in the second house and 0.6 and 30$^{\circ}$ in the third house, respectively. 4. The maximum mean positive and negative wind forces occurred at the wind direction of 60$^{\circ}$ and 30$^{\circ}$, respectively, on the side walls of the first house, and the maximum mean negative wind force on the roof occurred at the wind direction of 30$^{\circ}$ in third house. 5. The maximum drag and lift forces occurred at the wind direction of 30$^{\circ}$, and the maximum lift force appeared in the third house. 6. The parts to be considered for the local wind forces were the edges of the walls, the edges of the x-direction of the roofs, and the locations of the width ratio of 0.4 of the first and third house and the center of the width of the second house for the y-direction of the roofs.

  • PDF

Wind Characteristics of Urban Street Canyon at High Rise Building Area (고층건물 도로협곡의 바람특성)

  • Zheng, Hai-Yan;Jin, Wen-Cheng;Lee, Sung-Hee;Lee, Kyoo-Seock
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.2
    • /
    • pp.9-18
    • /
    • 2012
  • The street canyon forms the geometric unit of the built environment. The geometry makes up urban canyons and it influences the urban climate. In order to investigate the wind characteristics of urban street canyon at Dogok-dong, Gangnam-gu in Seoul, the wind direction and wind speed data were observed and analyzed by using 2-D ultra sonic and propeller wind monitor from May 5, 2010 to May 4, 2011. The results show that the prevailing wind direction was west at Station A(Military Mutual Aid Association Building), southwest at Station B(Sookmyung Girls' High School) and the wind speed of Station B was higher than Station A. There were diurnal differences about prevailing wind direction between two stations : it was westerly wind at Station A for a whole day, but at Station B only from 22 : 00 to 04 : 00. However, Station B is different from Station A at other time. At Station B, it was easterly wind from 04 : 00 to 12 : 00, southwesterly wind from 12 : 00 to 22 : 00. In terms of seasonal(except winter) frequency, the spring shows the highest frequency and fall was the next.

Analysis on Factors Influencing on Wind Power Generation Using LSTM (LSTM을 활용한 풍력발전예측에 영향을 미치는 요인분석)

  • Lee, Song-Keun;Choi, Joonyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.433-438
    • /
    • 2020
  • Accurate forecasting of wind power is important for grid operation. Wind power has intermittent and nonlinear characteristics, which increases the uncertainty in wind power generation. In order to accurately predict wind power generation with high uncertainty, it is necessary to analyze the factors affecting wind power generation. In this paper, 6 factors out of 11 are selected for more accurate wind power generation forecast. These are wind speed, sine value of wind direction, cosine value of wind direction, local pressure, ground temperature, and history data of wind power generated.

Surface Wind Regionalization Based on Similarity of Time-series Wind Vectors

  • Kim, Jinsol;Kim, Hyun-Goo;Park, Hyeong-Dong
    • Asian Journal of Atmospheric Environment
    • /
    • v.10 no.2
    • /
    • pp.80-89
    • /
    • 2016
  • In the complex terrain where local wind systems are formed, accurate understanding of regional wind variability is required for wind resource assessment. In this paper, cluster analysis based on the similarity of time-series wind vector was applied to classify wind regions with similar wind characteristics and the meteorological validity of regionalization method was evaluated. Wind regions in Jeju Island and Busan were classified using the wind resource map of Korea created by a mesoscale numerical weather prediction modeling. The evaluation was performed by comparing wind speed, wind direction, and wind variability of each wind region. Wind characteristics, such as mean wind speed and prevailing wind direction, in the same wind region were similar and wind characteristics in different wind regions were meteor-statistically distinct. It was able to identify a singular wind region at the top area of Mt. Halla using the inconsistency of wind direction variability. Furthermore, it was found that the regionalization results correspond with the topographic features of Jeju Island and Busan, showing the validity.

Efficient Measurement of Wind Velocity and Direction Using Dual Rotor Wind Power Generator in Vessel (Dual Rotor 풍력발전을 이용한 선박에서의 효과적인 풍향 풍속 측정)

  • Choi, Won-Yeon;Park, Gye-Do;Lee, Jang-Myung
    • The Journal of Korea Robotics Society
    • /
    • v.5 no.4
    • /
    • pp.309-317
    • /
    • 2010
  • This paper proposes an efficient measurement system for the velocity and direction of the wind using the dual rotor wind power generator in vessel. Conventional digital measurement system recognizes the direction and the velocity of the wind using the electric compass or synchronous motor and Vane probe method using hall sensors. But each system has its own short-comings: the synchronous motor has a larger measurement error than the magnetic compass and magnetic compass is weak for the external disturbances such as fluctuation of the vessel. To compensate these short-comings, this paper proposes a new compensation algorithm for the fluctuation errors according to the external interference and the unexpected movement of the vessel along the roll and pitch directions. The proposed system is implemented with the dual compasses and a synchronous motor. The proposed independent power generation system can be operated by itself and can raise the efficiency of the wind power generation systems of 30 ~ 400 W installed along the vertical and horizontal axes. The proposed system also realizes the efficient and reliable power production system by the MPPT algorithm for the real-time recognition of the wind direction and velocity. An advanced switching algorithm for the battery charging system has been also proposed. Effectiveness of the proposed algorithm has been verified through the real experiments and the results are demonstrated.