• 제목/요약/키워드: Wind condition

검색결과 1,235건 처리시간 0.027초

Overall Vibration Values for Reliable Wind Turbines - The New VDI 3834 and the New ISO 10816-21 Guideline Close a Gap - Less Vibration is Better -

  • Becker, Edwin
    • 소음진동
    • /
    • 제22권4호
    • /
    • pp.28-32
    • /
    • 2012
  • Condition-based maintenance on wind turbines not only involves maintenance, but also encompasses servicing, inspection, measurement and evaluation of the condition of the unit. The current condition can be evaluated on the basis of machine-specific overall vibration values. Until now, overall vibration values had not been defined for wind turbines. In fact, ISO 10816-3 explicitly excludes wind power plants. The new VDI 3834 closes this gap shown in Sheet 1: Vibration values for wind turbines up to 3 MW. In addition to the new VDI 3834 is the ISO 10816-21 in preparation. The author of the article Dr. Edwin Becker is the nominated expert for Germany.

3MW급 풍력터빈을 모사한 풍력터빈 시뮬레이터 제어로직 설계에 관한 연구 (A Study on the Design of Control Logic for Wind Turbine Simulator having Similarity with 3MW Class Wind Turbine)

  • 오기용;이재경;박준영;이준신
    • 전기학회논문지
    • /
    • 제61권6호
    • /
    • pp.810-816
    • /
    • 2012
  • As wind power has increased steadily, the importance of a condition monitoring system is being emphasized to maximize the availability and reliability of a wind turbine. To develop the advanced algorithms for fault detection and lifespan estimation, a wind turbine simulator is essential for verification of the proposed algorithms before applying them to a condition diagnosis & integrity prognosis system. The developed new-type simulator in this paper includes blades and various sensors as well as a motor, a gearbox and a generator of which the existing simulators generally consist. It also has similarity with a 3MW class wind turbine and can be used to acquire operational data from various operation conditions. This paper presents a design method of control logic for the wind turbine simulator, which gives a wind generation method and similar dynamic characteristics with the 3MW wind turbine. Finally, the proposed control logic is verified through experiments.

5MW급 해상풍력 Sub-structure Jack-up Platform 수조모형시험 (Ocean Engineering Basic Test for 5MW Offshore Wind Turbine Sub-structure Jack-up Platform)

  • 전정도;전언찬
    • 한국기계가공학회지
    • /
    • 제12권1호
    • /
    • pp.15-21
    • /
    • 2013
  • The safety and stability of 5MW class offshore wind turbine Jack-up platform was investigated through ocean basin experiment. For simulating the environmental condition of yellow sea in the South Korea, diverse waves, winds and currents were performed based on Froude's number. Regular wave and irregular wave based on Froude's number were applied to the wind turbine structure. In experiments, the height and period of regular wave type were scaled down as the 1:50 ratio of real wave condition. Irregular wave type was simulated with TMA(Texel Storm, Marsen and Arsloe)spectrum. The vertical reaction force, resonance period and wave pressure applied to multi-supporters of wind offshore structure were measured experimentally. Finally, the results showed that the capsizing situation of the offshore structure was generated by the severe environmental condition.

The aerostatic response and stability performance of a wind turbine tower-blade coupled system considering blade shutdown position

  • Ke, S.T.;Xu, L.;Ge, Y.J.
    • Wind and Structures
    • /
    • 제25권6호
    • /
    • pp.507-535
    • /
    • 2017
  • In the strong wind shutdown state, the blade position significantly affects the streaming behavior and stability performance of wind turbine towers. By selecting the 3M horizontal axis wind turbine independently developed by Nanjing University of Aeronautics and Astronautics as the research object, the CFD method was adopted to simulate the flow field of the tower-blade system at eight shutdown positions within a single rotation period of blades. The effectiveness of the simulation method was validated by comparing the simulation results with standard curves. In addition, the dynamic property, aerostatic response, buckling stability and ultimate bearing capacity of the wind turbine system at different shutdown positions were calculated by using the finite element method. On this basis, the influence regularity of blade shutdown position on the wind-induced response and stability performance of wind turbine systems was derived, with the most unfavorable working conditions of wind-induced buckling failure of this type of wind turbines concluded. The research results implied that within a rotation period of the wind turbine blade, when the blade completely overlaps the tower (Working condition 1), the aerodynamic performance of the system is the poorest while the aerostatic response is relatively small. Since the influence of the structure's geometrical nonlinearity on the system wind-induced response is small, the maximum displacement only has a discrepancy of 0.04. With the blade rotating clockwise, its wind-induced stability performance presents a variation tendency of first-increase-then-decrease. Under Working condition 3, the critical instability wind speed reaches its maximum value, while the critical instability wind speed under Working condition 6 is the smallest. At the same time, the coupling effect between tower and blade leads to a reverse effect which can significantly improve the ultimate bearing capacity of the system. With the reduction of the area of tower shielded by blades, this reverse effect becomes more obvious.

풍력발전기를 위한 상태 모니터링 기술 (Condition Monitoring System of Wind Turbine)

  • 자파르 하미드;홍영선;안성훈;조영만;송철기;박종포
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2007년도 춘계학술대회
    • /
    • pp.395-399
    • /
    • 2007
  • Renewable energy sources such as wind energy is copiously available without any limitation. Wind turbines are used to tap the potential of wind energy which is available in millions of megawatt. Reliability of wind turbine is critical to extract this maximum amount of energy from the wind. We reviewed different techniques, methodologies, and algorithms developed to monitor the performance of wind turbine as well as for an early fault detection to keep away the wind turbines from catastrophic conditions due to sudden breakdowns. To keep the wind turbine in operation, implementation of Condition Monitoring System (CMS) is paramount, and for this purpose ample knowledge of these types of system is mandatory. So, an attempt has been made in this direction to review maximum approaches related to CMS in this piece of writing.

  • PDF

국지풍이 내륙의 안개발생에 미치는 영향 (Influence of Local Wind on Occurrence of Fog at Inland Areas)

  • 심화남;이영희
    • 대기
    • /
    • 제27권2호
    • /
    • pp.213-224
    • /
    • 2017
  • We have examined the influence of local wind on occurrence of fog at two inland areas, Chuncheon and Andong, in Korea. The surrounding topography of two inland areas shows significant difference: Chuncheon is located in the basin surrounded by ridges with north-south axis while Andong is located in the valley between the ridges with east-west axis. Occurrence of fog shows maximum in October at both sites but high occurrence of fog at Chuncheon is also noted in the winter. Occurrence of fog at Andong in October is much larger than that at Chuncheon. High occurrence of fog in October is due to favorable synoptic condition for fog formation such as weak wind, clear day and small depression of the dew-point. Fog occurrence at Chuncheon is closely related to very weak wind condition where wind speed is less than $0.5m\;s^{-1}$. The weak wind at Chuncheon in winter is due that pressure driven channeling wind (southerly) cancels out partly downslope northerly flow during nighttime. On the other hand, fog at Andong occurs well when wind is southeasterly which is thermally forced flow during nighttime. Southeasterly provides cold, moist air from the narrow valley to Andong during nighttime, leading to favorable condition for formation of fog.

운전정지 조건에서 5 MW 수평축 풍력터빈 로터의 풍하중 해석 (Wind Loads of 5 MW Horizontal-Axis Wind Turbine Rotor in Parked Condition)

  • 유기완;서윤호
    • 한국풍공학회지
    • /
    • 제22권4호
    • /
    • pp.163-169
    • /
    • 2018
  • 본 연구에서는 운전 정지 상태로 회전하지 않는 수평축 해상 풍력터빈 로터에서 발생하는 풍하중을 풍속, 요 각도, 방위각, 피치 각도를 달리하면서 대기경계층 내에서 작동하는 조건으로 평가하였다. 하중 예측 결과의 검증을 위해 단순화 한 블레이드 형상에 대한 블레이드 요소이론과 단순 계산치를 이용하여 얻어낸 공력 하중을 상호 비교하였으며, 코드와 비틀림 각도가 블레이드 스팬 방향에 따라 변하는 NREL 5 MW급 대형풍력터빈 로터에 대해서는 NREL에서 개발한 FAST 해석 결과와 본 연구의 해석 결과를 비교함으로써 해석 결과의 정확도를 검증하였다. 로터의 하중은 허브 중심을 원점으로 하는 고정된 3축 좌표계에 대해서 힘과 모멘트로 표현되는 6분력 하중으로 나타내었다. 따라서 이 결과는 풍력터빈 시스템의 동적 거동 해석과 로터에서 발생되는 전도 모멘트를 견디기 위해 필요한 지지 구조물의 기초하중 자료로 적용할 수 있다.

복잡지형 형상에 따른 풍력자원 보정에 관한 연구 (A study on wind source interpolation based on shape of complex topography)

  • 정의헌;문채주;김의선;장영학
    • 한국태양에너지학회 논문집
    • /
    • 제29권6호
    • /
    • pp.62-68
    • /
    • 2009
  • There has been a continuous increase in the utilization and utility value of renewable energy such as wind power generation in modem society. Wind condition is the absolute variable to the energy volume in the case of a wind power generation system. For this reason, wind power generators have already been installed in areas where wind velocity is high and the possibility of danger is very low. In other words, instability is likely if the wind velocity in an area is high and where a wind power generation system can be built. On the contrary, low wind velocity is possible in an area with high stability. Therefore, the design and manufacture of a wind power generation system should be carried out in a more complicated topography in order to secure a bigger market. This study examines and suggest how topography affects wind shear by analyzing the measured data in order to predict wind power generation more reliably.

탄성 다물체 동역학 해석기법을 이용한 풍력터빈 드라이브트레인의 동특성 해석 (Simulation Technique of Wind Turbine Dynamic Behavior using Multibody FEM Analysis)

  • 이승규;임동수;박영수;김진;최원호
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회A
    • /
    • pp.817-821
    • /
    • 2008
  • Wind turbine requires service life of about 20 years and each components of wind turbine requires high durability, because installation and maintenance costs are more expensive than generated electricity by wind turbine. So the design of wind turbine must be verified in various condition before production step. This paper demonstrates the application of a generic methodology, based on the flexible multibody simulation technique, for the dynamic analysis of a wind turbine and its drive train. The concern of the paper is the computation of dynamic loads of wind turbine in emergency-stop condition. The finite element model is used to analyse the dynamic behaviour of the wind turbine.

  • PDF

개발에 따른 지형변화가 국지 바람장에 미치는 영향 분석 - Envi-met 모형을 이용한 수치모의 - (An Analysis on Influence of Geographical Variation Induced by Development Affecting to the Local Scale Wind Environment - Numerical Simulation using the Envi-met Model -)

  • 정우식;박종길;이화운
    • 한국대기환경학회지
    • /
    • 제22권6호
    • /
    • pp.888-903
    • /
    • 2006
  • This study analyze the change of wind pattern and intensity according to the transform of surface conditions, such as land use and height of terrain, over the leeward region. In order to do this, we have employed 'Envi-met' microscale atmospheric numerical model. When the same wind condition is considered, the wind speed of base case having natural surface condition of Chunsudae shows the weakest strength among different cases such as the 'bare case' and the '20 m case' which the plants is removed and the height of terrain is flatted as 20 m above the sea level over the Chunsudae, respectively. The weakening of wind speed is a maximum of $4{\sim}8 m/s$ when the inflow wind speed is 55 m/s.