• Title/Summary/Keyword: Wind circulation

Search Result 329, Processing Time 0.026 seconds

Effect of Forced-air circulation of ambient Fruit on the Occurrence Fermented-fruit and Fruit Quality of Oriental Melon(Cucumis melo L. var. makuwa Mak.) (과실부위 송풍이 참외의 품질 및 발효과 발생에 미치는 영향)

  • 연일권;최성국;최부술;신용습
    • Journal of Bio-Environment Control
    • /
    • v.8 no.2
    • /
    • pp.99-107
    • /
    • 1999
  • The experiment was conducted to investigate the relationship between $Ca^{2+}$ uptake and development of fermented fruit through the forced-air circulation of ambient fruit. Air circulation of ambient fruits were adjusted with 0.3m/sec wind velocity for three hours a day from 10:00 to 13:00. Treatments consisted of 0, 10 day, 20 day, 30 day of forced air circulation of ambient fruit. Although the results varied depend on the duration forced air circulation, in general, treated fruit increased fruit weight, flesh thickness, fruit hardness, soluble solids, and chromaticity, and decreased the number of fermented-fruit. $Ca^{2+}$ content in fruit.

  • PDF

The Intensification of Walker Circulation over the Past 15 Years from 1999 and Its Relation to TC Activity in the Western North Pacific

  • Choi, Jae-Won;Cha, Yumi;Kim, Jeoung-Yun
    • Journal of the Korean earth science society
    • /
    • v.37 no.6
    • /
    • pp.359-372
    • /
    • 2016
  • The time-series of Walker circulation index (WCI) in this study shows the strengthening of the Walker circulation in recent years. To further understand the large-scale features related to the WCI strengthening, a difference between the averaged meteorological variables in two time periods 1999-2013 and 1984-1998 is analyzed. The difference in 850 hPa stream flows between the two periods shows that the anomalous easterlies (anomalous trade wind) are dominant due to the strengthening of anomalous anticyclonic circulations at the subtropical Pacific of both hemispheres. The difference between the averaged zonal atmospheric circulations over $5^oS-5^oN$ in the two periods confirms that upward flows are strengthened at the tropical western Pacific and downward flows are strengthened at the tropical central and eastern Pacific in recent years. It matches the WCI strengthening in recent years. The time-series of tropical cyclone (TC) genesis frequency from July to September shows that a mean TC genesis frequency from 1999-2013 decreases compared to that of the time period 1984-1998. The monsoon trough in the period 1984-1998 was located in the further east direction and stronger than that in the period 1999-2013. TCs in the recent period that are generated in further west than TCs in the past period moved from the west. Thus, the TC intensity along the coasts in East Asia becomes weaker in recent period. The intensification of Walker circulation in recent years is related to the weaker TC intensity in East Asia through strengthened anomalous anticyclones at the subtropical western Pacific.

A Model-generated Circulation in the Yellow Sea and the East China Sea: I. Depth-mean Flow Fields

  • Jung, Kyung-Tae;Kang, Hyoun-Woo;So, Jae-Kwi;Lee, Ho-Jin
    • Ocean and Polar Research
    • /
    • v.23 no.3
    • /
    • pp.223-242
    • /
    • 2001
  • This paper presents the depth-mean monthly variation in the circulation of the Yellow Sea and the East China Sea computed using a robust diagnostic model. The mixed three-dimensional finite-difference Galerkin function model developed by Lee et at. (2000, 2001) has been extended to take into account baroclinic effects and then used to calculate the depth-mean flow fields as part of the results. In addition to M2 tide and oceanic flows previously considered, the model has been driven by the monthly mean wind stresses from Na and Seo (1998), the density gradient calculated based on by GDEM data set released by US Navy. Model results are very encouraging in that many of observed features including Jeju Cyclonic Gyre and frontal eddies along the shelfside of the Kuroshio main stream and west of Kyushu, are satisfactorily reproduced and are expected to be of value in interpreting observations in various oceanograhic disciplines.

  • PDF

Implementation of a Joint System for Waves and Currents in the Black Sea

  • Toderascu, Robert;Rusu, Eugen
    • International Journal of Ocean System Engineering
    • /
    • v.4 no.1
    • /
    • pp.29-42
    • /
    • 2014
  • The objective of this paper is to present the implementation of a joint modeling system able to evaluate the propagation of the polluting agents in the marine environment. The system is composed by circulation model (Mohid) and a spectral wave model (SWAN). The results coming from the circulation model are provided as input to the SWAN simulations. Following this target the Mohid water circulation model was implemented and calibrated in the Black Sea basin. The current simulations were run for one year (2010) with a time step of 24 hours, using wind fields from ECMWF. The results concerning the current fields were introduced into SWAN, and the difference between the results of the SWAN simulations with and without the current input from Mohid was assessed. In this regard, 10 points where the significant wave height difference is higher were considered and analyzed. The conclusion of the work is that such a joint system provides more reliable results concerning the wave and current conditions in the Black Sea as it is very useful in providing the support in the case of the environmental alerts that may occur in marine environments.

Interaction among the East Asian Summer and Winter Monsoons, the Tropical Western Pacific and ENSO Cycle

  • Huang, Rong-Hui;Lu, Ri-Yu;Chen, Wen;Chen, Ji-Rong
    • Atmosphere
    • /
    • v.13 no.2
    • /
    • pp.47-68
    • /
    • 2003
  • Recent advances in the studies on the interaction between Asian monsoon and ENSO cycle are reviewed in this paper. Through the recent studies, the East Asian summer monsoon circulation system and the East Asian climate system have proposed. Moreover, different responses of the (winter and summer) monsoon circulation and summer rainfall anomalies in East Asia to ENSO cycle during its different stages have been understood further. Recently, the studies on the dynamical effect of East Asian monsoon on the thermal variability of the tropical western Pacific and ENSO cycle have been greatly advanced. These studies demonstrated further that ENSO cycle originates from the tropical western Pacific, and pointed out that the dynamical effect of East Asian winter and summer monsoons on ENSO cycle may be through the atmospheric circulation and zonal wind anomalies over the tropical western Pacific, which can excite the oceanic Kelvin wave and Rossby waves in the equatorial Pacific. Besides, the scientific problems in the interaction between Asian monsoon and ENSO cycle, which should be studied further in the near future, are also pointed out in this paper.

Analysis on the Relationship between the Korean Temperature and the Atmospheric Circulation over the Northern Hemisphere during Winter (우리나라 겨울철 기온과 북반구 대기 순환과의 상관성 분석)

  • Lim, So-Min;Yeh, Sang-Wook;Kim, Gong-Rae
    • Atmosphere
    • /
    • v.22 no.2
    • /
    • pp.187-197
    • /
    • 2012
  • This study investigates the relationship between the Korean temperature and the atmospheric circulation such as Arctic Oscillation, Siberian High and Aleutian Low during the winter (December-January) for the period of 1970-2011. It is found that all indices to represent aforementioned circulations are significantly correlated with Korean winter temperature for the period of 1970 - 2011. There are marked contrasts in such relationship, however, before and after the mid-1980s when a significant regime shift of Korean winter temperature occurred. While Korean winter temperature has a close relationship with Arctic Oscillation after the mid-1980s, its relationship with Siberian High and Aleutian Low is weakened. The composite analysis between a positive and negative phase of Arctic Oscillation before and after the mid-1980s is conducted to examine a recent strengthening of Arctic Oscillation-Korean winter temperature relationship. It is found that the structural changes of low-level wind and the geopotential height at 500 hPa between the two phases of Arctic Oscillation are more effective to influence Korean winter temperature after the mid-1980s. This may induce a close relationship between the Korean winter temperature variability and Arctic Oscillation after the mid-1980s compared to before the mid-1980s.

Numerical Study of the Circulation in the Japan Sea -I. Case of Closed Basin (동해의 해수 순환에 대한 Numerical Modelling 연구 -I. 폐쇄해역으로 가정한 경우)

  • Kim, Yeong Eui;Chung, Jong Yul
    • 한국해양학회지
    • /
    • v.24 no.2
    • /
    • pp.96-108
    • /
    • 1989
  • Applying the numerical scheme developed by Semtner (1974), we investigate the circulation system in the Japan Sea in response to the air-sea interaction and the wind. In spite of blocking straits, resulting surface circulation pattern is similar to the schematic surface current chart introduced by Uda(1934) and Naganuma (1972); the northward flow along the Korean coast and the anticlockwise gyre in the northeastern part of the Japan Sea. Also the southward current flows along the Korean coast at depth of 100-200 m as similar to the North Korean Cold Current suggested by Kim and Kim (1983). And the sinking phenomenon of relatively saline water in the northeastern part of the Japan Sea is similar to the formation of the Japan Sea Proper Water.

  • PDF

On the Possible Role of Local Thermal Forcing on the Japan Sea Circulation (동해의 열적작용이 해수순환에 미칠 수 있는 영향에 관한 고찰)

  • Seung, Young-Ho;Kim, Kuh
    • 한국해양학회지
    • /
    • v.24 no.1
    • /
    • pp.29-38
    • /
    • 1989
  • It has been believed that the circulation in the Japan Sea involves separation of current from the Korean coast and formation of a cold cyclonic gyre in the north. To explain this, a simple quasi-geostrophic linear model is considered. The model is basically of an inflow-outflow system. The local forcings, wind and air-sea heat exchange together with damping (both mechanical and thermal), are imposed upon. The results show that only the buoyancy damping due to perturbations from local thermal adjustment can cause the separation and the gyre. Various types of circulation patterns are possible depending on the intensity of the thermal forcing.

  • PDF

Development of a new free wake model using finite vortex element for a horizontal axis wind turbine

  • Shin, Hyungki;Park, Jiwoong;Lee, Soogab
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.1
    • /
    • pp.17-27
    • /
    • 2017
  • The treatment of rotor wake has been a critical issue in the field of the rotor aerodynamics. This paper presents a new free wake model for the unsteady analysis for a wind turbine. A blade-wake-tower interaction is major source of unsteady aerodynamic loading and noise on the wind turbine. However, this interaction can not be considered in conventional free wake model. Thus, the free wake model named Finite Vortex Element (FVE hereafter) was devised in order to consider the interaction effects. In this new free wake model, the wake-tower interaction was described by dividing one vortex filament into two vortex filaments, when the vortex filament collided with a tower. Each divided vortex filaments were remodeled to make vortex ring and horseshoe vortex to satisfy Kelvin's circulation theorem and Helmholtz's vortex theorem. This model was then used to predict aerodynamic load and wake geometry for the horizontal axis wind turbine. The results of the FVE model were compared with those of the conventional free wake model and the experimental results of SNU wind tunnel test and NREL wind tunnel test under various inflow velocity and yaw condition. The result of the FVE model showed better correlation with experimental data. It was certain that the tower interaction has a strong effect on the unsteady aerodynamic load of blades. Thus, the tower interaction needs to be taken into account for the unsteady load prediction. As a result, this research shows a potential of the FVE for an efficient and versatile numerical tool for unsteady loading analysis of a wind turbine.

On the Characteristics of Vertical Atmospheric Structure in the Western Coastal Region through the Intensive Observation Period (집중관측을 통한 서해연안의 대기 수직구조 특성)

  • 문승의;노재식
    • Journal of Environmental Science International
    • /
    • v.7 no.3
    • /
    • pp.335-348
    • /
    • 1998
  • The intensive meteorological observations including pibal balloon at Ungcheon, airsonde and 10m meteorological tower observations at Gulup-Do, where are located In the western coastal region, are taken to Investigate the characteristics of the upper and lower atmospheric structure and the local circulation pattern during the period of 17 to 22 September 1996. The diurnal variations of weather elements(i.e. air temperature, humidity, pressure, and Und speeds at Gulup-Do are analyzed and discussed with those at four inland meteorological stations. The vertical profiles of wind vector, ortho- gonality(Ω), and shear obtained from the pibal obsenrations are also presented to examine the change of wand structure according to the synoptic-scale pressure system's movement. The diurnal temperature changes at Gulup-Do are more sensitive than that of Inland meteorological stations In case of the mow of southwesterlies but are not dominant due to the ocean effect under the Influence of relatively cold northerlies. A well defined mixed layer Is developed from the 500m to the maximum 1700m with a significant capping Inversion layer on the top of it. It can be found from the vertical profiles of wind vector that the wind become generally strong at the interface heights between cloud lay- ers and non-cloud layers. The maximum Und shear Is appeared at the bel각t where the varlauon of wand direction Induced by the passage of synoptic-scale pressure system Is accompanied with the In- crease of Und speed. Based on the wind orthogonality, the change of wind direction with height is more complicated In cloudy day than In clear day. In case of a fair weather, the change of wand direction is showed to be at around 2km.

  • PDF