• Title/Summary/Keyword: Wind characteristics

Search Result 2,797, Processing Time 0.03 seconds

Wind characteristics of Typhoon Dujuan as measured at a 50m guyed mast

  • Law, S.S.;Bu, J.Q.;Zhu, X.Q.;Chan, S.L.
    • Wind and Structures
    • /
    • v.9 no.5
    • /
    • pp.387-396
    • /
    • 2006
  • This paper presents the wind characteristics of Typhoon Dujuan as measured at a 50 m guyed mast in Hong Kong. The basic wind speed, wind direction and turbulent intensity are studied at two measurement levels of the structure. The power spectral density of the typhoon is compared with the von Karman prediction, and the coherence between wind speeds at the two measurement levels is found to This paper presents the wind characteristics of Typhoon Dujuan as measured at a 50 m guyed mast in Hong Kong. The basic wind speed, wind direction and turbulent intensity are studied at two measurement levels of the structure. The power spectral density of the typhoon is compared with the von Karman prediction, and the coherence between wind speeds at the two measurement levels is found to compare with Davenport's prediction. The effect of typhoon Dujuan on the response of the structure will be discussed in a companion paper (Law, et al. 2006).with Davenport's prediction. The effect of typhoon Dujuan on the response of the structure will be discussed in a companion paper (Law, et al. 2006).

An Analysis on the Characteristics of Wind Distribution in the Coast of Busan Using AWS Data (AWS 데이터를 이용한 부산 해안의 바람분포 특성 해석)

  • Seol, Dong-Il
    • Journal of Navigation and Port Research
    • /
    • v.33 no.8
    • /
    • pp.549-554
    • /
    • 2009
  • Wind velocity and wind direction are very important in the viewpoint of ship's safety and stability of port structure. The characteristics of wind distribution in the coast of Busan are analyzed for 10 years from 1997 to 2006 using AWS(Automatic Weather System) data. The characteristics of wind distribution of Miryang, is not affected by the land and sea breeze are also examined to understand clearly the characteristics of wind distribution in the coast of Busan. The mean wind velocity in the coast of Busan is stronger than that of Miryang. The mean wind velocitie at Youngdo and Gadukdo stations of Busan are stronger about 2.0 times than those at IlGwang, Haeundae and Daeyeon stations. The correlation a states show that the variation tendencies of monthly mean wind velocitie in the coast of Busan are very similar. The maximum monthly mean velocitie in the coast of Busan are recorded in September. This re ult is closely related to the influence of typhoon. The maximum instantaneous wind velocitie are also strong at Youngdo and Gadukdo stations and the peaks of maximum instantaneous wind $velocit^9$ are observed mainly from August to September. In the coast of Busan, the SW'ly-NNE'ly wind are prevailing in the winter and the SW'ly and NE'ly wind are predomi snt in the spring. w that the vs of wind direction in the summer and athumn are similar with those in the spring and winter, respectively.

Observed characteristics of tropical cyclone vertical wind profiles

  • Giammanco, Ian M.;Schroeder, John L.;Powell, Mark D.
    • Wind and Structures
    • /
    • v.15 no.1
    • /
    • pp.65-86
    • /
    • 2012
  • Over the last decade substantial improvements have been made in our ability to observe the tropical cyclone boundary layer. Low-level wind speed maxima have been frequently observed in Global Positioning System dropwindsonde (GPS sonde) profiles. Data from GPS sondes and coastal Doppler radars were employed to evaluate the characteristics of tropical cyclone vertical wind profiles in open ocean conditions and at landfall. Changes to the mean vertical wind profile were observed azimuthally and with decreasing radial distance toward the cyclone center. Wind profiles within the hurricane boundary layer exhibited a logarithmic increase with height up to the depth of the wind maximum.

Non-stationary and non-Gaussian characteristics of wind speeds

  • Hui, Yi;Li, Bo;Kawai, Hiromasa;Yang, Qingshan
    • Wind and Structures
    • /
    • v.24 no.1
    • /
    • pp.59-78
    • /
    • 2017
  • Non-stationarity and non-Gaussian property are two of the most important characteristics of wind. These two features are studied in this study based on wind speed records measured at different heights from a 325 m high meteorological tower during the synoptic wind storms. By using the time-frequency analysis tools, it is found that after removing the low frequency trend of the longitudinal wind, the retained fluctuating wind speeds remain to be asymmetrically non-Gaussian distributed. Results show that such non-Gaussianity is due to the weak-stationarity of the detrended fluctuating wind speed. The low frequency components of the fluctuating wind speeds mainly contribute to the non-zero skewness, while distribution of the high frequency component is found to have high kurtosis values. By further studying the decomposed wind speed, the mechanisms of the non-Gaussian distribution are examined from the phase, turbulence energy point of view.

Effects of coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness on wind-excited tall buildings

  • Thepmongkorn, S.;Kwok, K.C.S.
    • Wind and Structures
    • /
    • v.5 no.1
    • /
    • pp.61-80
    • /
    • 2002
  • Wind tunnel aeroelastic model tests of the Commonwealth Advisory Aeronautical Research Council (CAARC) standard tall building were conducted using a three-degree-of-freedom base hinged aeroelastic(BHA) model. Experimental investigation into the effects of coupled translational-torsional motion, cross-wind/torsional frequency ratio and eccentricity between centre of mass and centre of stiffness on the wind-induced response characteristics and wind excitation mechanisms was carried out. The wind tunnel test results highlight the significant effects of coupled translational-torsional motion, and eccentricity between centre of mass and centre of stiffness, on both the normalised along-wind and cross-wind acceleration responses for reduced wind velocities ranging from 4 to 20. Coupled translational-torsional motion and eccentricity between centre of mass and centre of stiffness also have significant impacts on the amplitude-dependent effect caused by the vortex resonant process, and the transfer of vibrational energy between the along-wind and cross-wind directions. These resulted in either an increase or decrease of each response component, in particular at reduced wind velocities close to a critical value of 10. In addition, the contribution of vibrational energy from the torsional motion to the cross-wind response of the building model can be greatly amplified by the effect of resonance between the vortex shedding frequency and the torsional natural frequency of the building model.

A comparison of the performance characteristics of large 2 MW and 3 MW wind turbines on existing onshore wind farms

  • Bilgili, Mehmet;Ekinci, Firat;Demirdelen, Tugce
    • Wind and Structures
    • /
    • v.32 no.2
    • /
    • pp.81-87
    • /
    • 2021
  • The aim of the current study is to compare the performance of large 2 MW and 3 MW wind turbines operating on existing onshore wind farms using Blade Element Momentum (BEM) theory and Angular Momentum (AM) theory and illustrate the performance characteristic curves of the turbines as a function of wind speed (U∞). To achieve this, the measurement data obtained from two different Wind Energy Power Plants (WEPPs) located in the Hatay region of Turkey was used. Two different horizontal-axis wind turbines with capacities of 2 MW and 3 MW were selected for evaluation and comparison. The hub-height wind speed (UD), turbine power output (P), atmospheric air temperature (Tatm) and turbine rotational speed (Ω) data were used in the evaluation of the turbine performance characteristics. Curves of turbine power output (P), axial flow induction factor (a), turbine rotational speed (Ω), turbine power coefficient (CP), blade tip speed ratio (λ), thrust force coefficient (CT) and thrust force (T) as a function of U∞ were obtained for the 2 MW and 3 MW wind turbines and these characteristic curves were compared. Results revealed that, for the same wind speed conditions, the higher-capacity wind turbine (3 MW) was operating at higher turbine power coefficient rates, while rotating at lower rotational speed ratios than the lower-capacity wind turbine (2 MW).

Characteristics of Wind Environment in Dongbok·Bukchon Wind Farm on Jeju (제주 동복·북촌 풍력발전단지의 바람환경 특성분석)

  • Jeong, Hyeong-Se;Kim, Yeon-Hee;Choi, Hee-Wook
    • New & Renewable Energy
    • /
    • v.18 no.1
    • /
    • pp.1-16
    • /
    • 2022
  • Climatic characteristics were described using the LiDAR (Light Detection and Ranging) and the met-mast on Dongbok·Bukchon region. The influences of meteorological conditions on the power performance of wind turbines were presented using the data of Supervisory Control And Data Acquisition (SCADA) and met-mast of the Dongbok·Bukchon Wind Farm (DBWF) located in Jeju Island. The stability was categorized into three parameters (Richardson number, Turbulence intensity, and Wind shear exponent). DBWF was dominant in unstable atmospheric conditions. At wind speeds of 14 m/s or more, the proportion of slightly unstable conditions accounted for more than 50%. A clear difference in the power output of the wind turbine was exhibited in the category of atmospheric stability and turbulence intensity (TI). Particularly, a more sensitive difference in power performance was showed in the rated wind speeds of the wind turbine and wind regime with high TI. When the flow had a high turbulence at low wind speeds and a low turbulence at rated wind speeds, a higher wind energy potential was produced than that in other conditions. Finally, the high-efficiency of the wind farm was confirmed in the slightly unstable atmospheric stability. However, when the unstable state become stronger, the wind farm efficiency was lower than that in the stable state.

Statistical characteristics of sustained wind environment for a long-span bridge based on long-term field measurement data

  • Ding, Youliang;Zhou, Guangdong;Li, Aiqun;Deng, Yang
    • Wind and Structures
    • /
    • v.17 no.1
    • /
    • pp.43-68
    • /
    • 2013
  • The fluctuating wind induced vibration is one of the most important factors which has been taken into account in the design of long-span bridge due to the low stiffness and low natural frequency. Field measurement characteristics of sustained wind on structure site can provide accurate wind load parameters for wind field simulation and structural wind resistance design. As a suspension bridge with 1490 m main span, the Runyang Suspension Bridge (RSB) has high sensitivity to fluctuating wind. The simultaneous and continuously wind environment field measurement both in mid-span and on tower top is executed from 2005 up to now by the structural health monitoring system installed on this bridge. Based on the recorded data, the wind characteristic parameters, including mean wind speed, wind direction, the turbulence intensity, the gust factors, the turbulence integral length, power spectrum and spatial correlation, are analyzed in detail and the coherence functions of those parameters are evaluated using statistical method in this paper. The results indicate that, the turbulence component of sustain wind is larger than extremely strong winds although its mean wind speed is smaller; the correlation between turbulence parameters is obvious; the power spectrum is special and not accord with the Simiu spectrum and von Karman spectrum. Results obtained in this study can be used to evaluate the long term reliability of the Runyang Suspension Bridge and provide reference values for wind resistant design of other structures in this region.

Monitoring of wind effects on an instrumented low-rise building during severe tropical storm

  • Li, Q.S.;Hu, S.Y.
    • Wind and Structures
    • /
    • v.20 no.3
    • /
    • pp.469-488
    • /
    • 2015
  • A full-scale instrumented low-rise building with gable roof was built at a coastal site with a high incidence of tropical cyclones for monitoring of wind effects on the building during windstorms. This paper presents the field measurements of the wind velocity field around and the wind-induced pressures on the low-rise building during the passage of severe tropical storm Soudelor. Near-ground wind characteristics such as wind speed, wind direction, turbulence intensity, gust factor, turbulence integral length scale and wind velocity spectra were investigated. The wind-induced pressures on the roof of the building were analyzed and discussed. The results revealed that the eave and ridge edges on the roof were subjected to the most severe suction pressures under quartering winds. These suction pressures showed obvious non-Gaussian behavior. The measured results were compared with the provisions of ASCE 7-10 to assess the suitability of the code of practice for the wind-resistant design of low-rise buildings under tropical cyclones. The field study aims to provide useful information that can enhance our understanding of the extreme wind effects on low-rise buildings in an effort to reduce tropical cyclone wind damages to residential buildings.

Analysis on Factors Influencing on Wind Power Generation Using LSTM (LSTM을 활용한 풍력발전예측에 영향을 미치는 요인분석)

  • Lee, Song-Keun;Choi, Joonyoung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.433-438
    • /
    • 2020
  • Accurate forecasting of wind power is important for grid operation. Wind power has intermittent and nonlinear characteristics, which increases the uncertainty in wind power generation. In order to accurately predict wind power generation with high uncertainty, it is necessary to analyze the factors affecting wind power generation. In this paper, 6 factors out of 11 are selected for more accurate wind power generation forecast. These are wind speed, sine value of wind direction, cosine value of wind direction, local pressure, ground temperature, and history data of wind power generated.