• Title/Summary/Keyword: Wind characteristics

Search Result 2,797, Processing Time 0.033 seconds

Wind-excited stochastic vibration of long-span bridge considering wind field parameters during typhoon landfall

  • Ge, Yaojun;Zhao, Lin
    • Wind and Structures
    • /
    • v.19 no.4
    • /
    • pp.421-441
    • /
    • 2014
  • With the assistance of typhoon field data at aerial elevation level observed by meteorological satellites and wind velocity and direction records nearby the ground gathered in Guangzhou Weather Station between 1985 and 2001, some key wind field parameters under typhoon climate in Guangzhou region were calibrated based on Monte-Carlo stochastic algorithm and Meng's typhoon numerical model. By using Peak Over Threshold method (POT) and Generalized Pareto Distribution (GPD), Wind field characteristics during typhoons for various return periods in several typical engineering fields were predicted, showing that some distribution rules in relation to gradient height of atmosphere boundary layer, power-law component of wind profile, gust factor and extreme wind velocity at 1-3s time interval are obviously different from corresponding items in Chinese wind load Codes. In order to evaluate the influence of typhoon field parameters on long-span flexible bridges, 1:100 reduced-scale wind field of type B terrain was reillustrated under typhoon and normal conditions utilizing passive turbulence generators in TJ-3 wind tunnel, and wind-induced performance tests of aero-elastic model of long-span Guangzhou Xinguang arch bridge were carried out as well. Furthermore, aerodynamic admittance function about lattice cross section in mid-span arch lib under the condition of higher turbulence intensity of typhoon field was identified via using high-frequency force-measured balance. Based on identified aerodynamic admittance expressions, Wind-induced stochastic vibration of Xinguang arch bridge under typhoon and normal climates was calculated and compared, considering structural geometrical non-linearity, stochastic wind attack angle effects, etc. Thus, the aerodynamic response characteristics under typhoon and normal conditions can be illustrated and checked, which are of satisfactory response results for different oncoming wind velocities with resemblance to those wind tunnel testing data under the two types of climate modes.

Analysis of Dynamic Characteristics for Doubly-Fed Induction Generator in Wind Turbine System based on Stiffness of Linked System (연계계통의 강인성에 따른 이중여자유도발전 풍력시스템의 동특성 해석)

  • Kim, Tae-Ho;Ro, Kyoung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.458_459
    • /
    • 2009
  • This paper analyzes the dynamic characteristics for doubly-fed induction generator(DFIG) in wind turbine system. This paper presents a modeling and simulation of a grid-connected wind turbine generation system for dynamics analysis on MATLAB/Simulink, and analyzes the responses DFIG wind turbine system for stiffness of linked system. Simulation results show the variations of generator's active/reactive output, terminal voltage, fault current, etc.

  • PDF

A study on Electrical Characteristics of Solar Cell - Wind Generator Hybrid system (태양광, 풍력발전 하이브리드시스템의 전기적 특성)

  • Hong, Chang-Woo;Choi, Young-Sung;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.25-25
    • /
    • 2010
  • In this paper, we have investigated the electrical characteristics for solar-cell and wind power generator hybrid system. The output of electricity for solar cell - wind generator hybrid system were investigated according to the weather conditions at Naju province.

  • PDF

Characteristics of Wind Noise from Overhead Transmission Facilities (가공 송전설비의 소음 특성)

  • 추장희;김상범;신구용;이성두;이동일
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.465-472
    • /
    • 2001
  • This paper describes the characteristics of wind induced noise from high-voltage overhead transmission facilities which include transmission lines. insulator strings. and aviation beacon spheres installed on the overhead ground wires. High-voltage overhead transmission lines generate an audible wind noise due to the alternate shedding of wind-induced vortices. The frequency spectrum from the insulator strings reveals its resonance peak. This resonance sound mechanism has been supposed the self-excitation phenomenon of the resonance and the velocity fluctuation. The booming noises from the aviation beacon spheres are detected and analysed.

  • PDF

Wind-sand coupling movement induced by strong typhoon and its influences on aerodynamic force distribution of the wind turbine

  • Ke, Shitang;Dong, Yifan;Zhu, Rongkuan;Wang, Tongguang
    • Wind and Structures
    • /
    • v.30 no.4
    • /
    • pp.433-450
    • /
    • 2020
  • The strong turbulence characteristic of typhoon not only will significantly change flow field characteristics surrounding the large-scale wind turbine and aerodynamic force distribution on surface, but also may cause morphological evolution of coast dune and thereby form sand storms. A 5MW horizontal-axis wind turbine in a wind power plant of southeastern coastal areas in China was chosen to investigate the distribution law of additional loads caused by wind-sand coupling movement of coast dune at landing of strong typhoons. Firstly, a mesoscale Weather Research and Forecasting (WRF) mode was introduced in for high spatial resolution simulation of typhoon "Megi". Wind speed profile on the boundary layer of typhoon was gained through fitting based on nonlinear least squares and then it was integrated into the user-defined function (UDF) as an entry condition of small-scaled CFD numerical simulation. On this basis, a synchronous iterative modeling of wind field and sand particle combination was carried out by using a continuous phase and discrete phase. Influencing laws of typhoon and normal wind on moving characteristics of sand particles, equivalent pressure distribution mode of structural surface and characteristics of lift resistance coefficient were compared. Results demonstrated that: Compared with normal wind, mesoscale typhoon intensifies the 3D aerodynamic distribution mode on structural surface of wind turbine significantly. Different from wind loads, sand loads mainly impact on 30° ranges at two sides of the lower windward region on the tower. The ratio between sand loads and wind load reaches 3.937% and the maximum sand pressure coefficient is 0.09. The coupling impact effect of strong typhoon and large sand particles is more significant, in which the resistance coefficient of tower is increased by 9.80% to the maximum extent. The maximum resistance coefficient in typhoon field is 13.79% higher than that in the normal wind field.

Aerodynamic Characteristics of Neighboring Building Exposed to Twisted Wind

  • Lei Zhou;KamTim Tse;Gang Hu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.4
    • /
    • pp.241-263
    • /
    • 2022
  • The conventional wind and twisted-wind effect on aerodynamic properties of neighboring buildings arranged in side-by-side and tandem systems at 2B and 5B spacings are systematically investigated by large eddy simulation. Different physical interactions between different wind profiles and neighboring buildings will be deeply understood. The neighboring-building system under two different types of wind profiles, i.e., conventional wind profile (CWP), twisted wind profiles (TWP) with the maximum twisted angle of 30°, is used to evaluate the variation of physical mechanism between wind and buildings. Aerodynamic characteristics including mean and RMS pressure coefficient, and velocity field were systematically analyzed and compared between different scenario. It was found that the distribution of mean pressure, root-mean-square x velocity and the streamline of wind flow for TWP greatly deviated from CWP, and the effect of TWP on the downstream building, was drastically different from that of CWP, such as the size of vortexes after the lower stream building being bigger when exposed to TWP, and the mean pressure distribution on the building surfaces are also different. Moreover, evidence of buildings arranged in side-by-side and tandem configurations having interchangeable properties under TWP was also discovered, that two buildings being arranged side-by-side exposed to TWP could be identified as being arranged in tandem with a different wind twist angle, or vice versa.

A Study on the Thermal and Flow Characteristics of Wind and Radiant Heat Shield for Offshore by using Mesh Screen (메쉬 스크린을 적용한 해양구조물용 방풍 및 복사열 차단막 열유동특성에 관한 연구)

  • Yi, Chung-Seob;Chin, Do-Hun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.3
    • /
    • pp.166-173
    • /
    • 2012
  • This study is about comparison of thermal and flow characteristics on the wind & radiant heat shield with STS mesh type screen for offshore. Numerical analysis was conducted to find transmission coefficient in the mesh and then analyse the flow characteristics about wind & radiant heat shield. The experiment method of solar radiation has been used as thermal radiation source to get the performance of radiant heat shield measurement. The sensor radiation device has been used to measure the reduction of solar radiation with various size of cells and at a distance of 0.5m and 1m from the cold face of the wind & radiant heat shield.

Study for Dynamic Stall Characteristics of Vertical Axis Wind Turbine Airfoil (수직형 풍력터빈 익형의 동특성 분석)

  • Kim, Cheol-Wan;Cho, Tae-Whan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.478-481
    • /
    • 2009
  • As a first step for aerodynamic analysis of vertical axis wind turbine, dynamic stall characteristics of airfoil was investigated. Dynamic stall of wind turbine airfoil is caused by severe variation of angle of attack and relative velocity of flow around airfoil. Angle of attack and relative velocity can be expressed with tip speed ratio. Variation of angle of attack is strongly dependent on the tip speed ratio. For tip speed ratio, 1.4 and free stream velocity, 15m/s, dynamic stall characteristics of wind turbine airfoil is compared with those of oscillating airfoil having same angle of attack variation.

  • PDF

Simulation of Reactive Power Compensation in Grid-Connected Wind Power Generation System (계통연계 풍력발전시스템의 무효전력 보상에 대한 시뮬레이션)

  • Ro, Kyoung-Soo;Jang, Bo-Kyoung
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.82-89
    • /
    • 2011
  • Reactive power support is considered to be necessary for dealing with a voltage stability issue with wind turbine system employing squirrel-cage induction generator(SCIG). This paper analyses steady-state characteristics of the SCIG wind turbine system by simulating torque-slip characteristics of SCIG with respect to variations of interconnecting network strength and generator terminal voltage. It also presents dynamics analysis of SCIG wind turbine system on Simulink to investigate the impact of static var compensator(SVC) and static synchronous compensator(STATCOM) on transient stability enhancement. It analysed transient stability with varying fault duration times and compared the transient stability characteristics with varying rated capacities of SVC and STATCOM. It is shown that the STATCOM has a better performance and reactive power support compared to SVC.

A Study on Operational Characteristics of Wind Turbine Induction Generators Interconnected with Distribution Networks Using PSCAD/EMTDC (PSCAD/EMTDC를 이용한 계통 연계 풍력 유도 발전기의 운전 특성에 관한 연구)

  • 장성일;정종찬;김광호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.12
    • /
    • pp.704-713
    • /
    • 2002
  • This paper describes operational characteristics of wind turbine induction generators interconnected with distribution networks using PSCAD/EMTDC. Due to the simple and durable structure, induction generators are the most common type used in wind Power generation. Generally, induction generators are classified into two groups according to the shape of rotor, one is squirrel-cage type and the other is wound-rotor type. In this study, we simulate the start-up and the output variation of generators interconnected with distribution networks and compare the operational characteristics of squirrel -cage type and wound-rotor type induction generators located in the unfaulted distribution lines about the disturbance occurred on the associated distribution feeders emanated from the substation to which wind turbine generator is connected. In order to obtain the realistic results, we use the radial distribution network of IEEE 13-bus model.