• 제목/요약/키워드: Wind blades

검색결과 318건 처리시간 0.147초

Effect of Ice accretion on the aerodynamic characteristics of wind turbine blades

  • Sundaresan, Aakhash;Arunvinthan, S.;Pasha, A.A.;Pillai, S. Nadaraja
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.205-217
    • /
    • 2021
  • Cold regions with high air density and wind speed attract wind energy producers across the globe exhibiting its potential for wind exploitation. However, exposure of wind turbine blades to such cold conditions bring about devastating impacts like aerodynamic degradation, production loss and blade failures etc. A series of wind tunnel tests were performed to investigate the effect of icing on the aerodynamic properties of wind turbine blades. A baseline clean wing configuration along with four different ice accretion geometries were considered in this study. Aerodynamic force coefficients were obtained from the surface pressure measurements made over the test model using MPS4264 Simultaneous pressure scanner. 3D printed Ice templates featuring different ice geometries based on Icing Research Tunnel data is utilized. Aerodynamic characteristics of both the clean wing configuration and Ice accreted geometries were analysed over a wide range of angles of attack (α) ranging from 0° to 24° with an increment of 3° for three different Reynolds number in the order of 105. Results show a decrease in aerodynamic characteristics of the iced aerofoil when compared against the baseline clean wing configuration. The key flow field features such as point of separation, reattachment and formation of Laminar Separation Bubble (LSB) for different icing geometries and its influence on the aerodynamic characteristics are addressed. Additionally, attempts were made to understand the influence of Reynolds number on the iced-aerofoil aerodynamics.

Structural Analysis and Proof Test of Composite Rotor Blades for Wind Turbine (풍력발전기용 복합재 블레이드의 구조해석 및 인증시험)

  • Park, Sun-Ho;Han, Kyung-Seop
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 추계학술대회 논문집
    • /
    • pp.299-302
    • /
    • 2008
  • GFRP based composite rotor blades were developed for 750kW & 2MW wind turbines. The blade sectional geometry was designed to have a general shell-spar and shear web structure. For verifying the structural safety under all relevant extreme loads specified in the GL guidelines, the structural analysis of the rotor blades was performed using commercial FEM codes. The static load carrying capacity, blade tip deflections and natural frequencies were evaluated to satisfy the strength and stability requirements. Full-scale proof tests of rotor blades were carried out with optical fiber sensors for real-time condition monitoring. Finally, the prototype of each rotor blade passed all proof tests for GL certification.

  • PDF

A Reliability Study of the Phased Array Ultrasonic Testing: Case Study for the Composite Blades of Wind Power Generation (위상배열 초음파 탐지검사의 신뢰성에 관한 연구: 풍력발전기 복합소재 블레이드 사례연구)

  • Kang, Byung Kwon;Lim, Ik Sung;Koo, Ilseob
    • Journal of Applied Reliability
    • /
    • 제16권4호
    • /
    • pp.338-346
    • /
    • 2016
  • Purpose: The purpose of this research is to improve the reliability of the composite material blades used for the wind power generator, by applying the phased array ultrasonic testing technique out of the many nondestructive test into the blades. Method: The wind power generation composite blades are used, as a case study, in order to evaluate the reliability of the phased array ultrasonic testing technique. Defects that are most likely occurred in the field are injected into the different locations of the three different types of artificial test pieces and then phased array ultrasonic testing technique are applied to evaluate the reliability of its effectiveness. Result: As a result of the analysis of the defect signals by applying the A scan and B scan simultaneously, depth and width of the defect could be obtained. An area of defect was proportional to the amount of energy by color in B scan image. The larger amount of energy, reflected amount of energy was appeared in the order of red, orange, yellow, blue color. Conclusion: The most reliable testing method to detect the defect in composite blades for wind power generation is considered to be the combination of the other destructive testing technique with the phased array ultrasonic testing since the PAUT alone could not detect all range of the defects in the blades.

A Comparative Study on Structural Performance of Wind Turbine Composite Blades with Room-Temperature and Radiation Curing (상온 및 방사선 경화 복합재 풍력 블레이드의 구조성능 비교)

  • Jeon, Jae Heung;Kim, Sung Jun;Shin, Eui Sup
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제25권3호
    • /
    • pp.203-209
    • /
    • 2012
  • In this paper, cross-sectional stiffnesses, static stresses, and dynamic natural frequencies are analyzed to examine the structural performance of wind turbine composite blades. The material properties of composite materials are based on room-temperature and radiation curing processes. The cross-sectional stiffnesses of composite blades are calculated by applying a beam theory with solid-profile cross sections. The wind turbine blades are modeled with a finite element program, and static analyses are carried out to check the maximum displacement and stress of the blades. In addition, dynamic analyses are performed to predict the rotating natural frequencies of the composite blades including the effects of centrifugal force. By comparing these analysis results, mainly owing to the material properties of composite materials, an improvement in the structural performance of the blades according to the curing process is investigated.

Computational Flow Analysis on Improvement Effect of Wind Shear by a Structure Installed Upstream of a Wind Turbine (풍력발전기 풍상부 지면설치 구조물에 의한 풍속전단 개선효과의 전산유동해석)

  • Kim, Hyun-Goo;Woo, Sang-Woo;Jang, Moon-Seok;Shin, Hyuong-Ki
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2008년도 춘계학술대회 논문집
    • /
    • pp.278-281
    • /
    • 2008
  • This study demonstrates the advantages of a shear-free structure designed to modify vertical profiles of wind speed in the atmospheric surface layer. Computational fluid dynamics(CFD) software, FLUENT is used to interpret the velocity field modification around the structure and wind turbine. The shapes of shear-free structure, installed at upstream toward prevailing wind direction, would be fences, buildings and trees, etc. According to the simulation results, it is obvious that wind shear between heights of wind turbine's blades is decreased together with a speed-up advantage. This would lead decrease of periodic wind loading caused by wind shear and power-out increase by flow uniformity and wind speed-up.

  • PDF

Automatic detection of icing wind turbine using deep learning method

  • Hacıefendioglu, Kemal;Basaga, Hasan Basri;Ayas, Selen;Karimi, Mohammad Tordi
    • Wind and Structures
    • /
    • 제34권6호
    • /
    • pp.511-523
    • /
    • 2022
  • Detecting the icing on wind turbine blades built-in cold regions with conventional methods is always a very laborious, expensive and very difficult task. Regarding this issue, the use of smart systems has recently come to the agenda. It is quite possible to eliminate this issue by using the deep learning method, which is one of these methods. In this study, an application has been implemented that can detect icing on wind turbine blades images with visualization techniques based on deep learning using images. Pre-trained models of Resnet-50, VGG-16, VGG-19 and Inception-V3, which are well-known deep learning approaches, are used to classify objects automatically. Grad-CAM, Grad-CAM++, and Score-CAM visualization techniques were considered depending on the deep learning methods used to predict the location of icing regions on the wind turbine blades accurately. It was clearly shown that the best visualization technique for localization is Score-CAM. Finally, visualization performance analyses in various cases which are close-up and remote photos of a wind turbine, density of icing and light were carried out using Score-CAM for Resnet-50. As a result, it is understood that these methods can detect icing occurring on the wind turbine with acceptable high accuracy.

An approximate method for aerodynamic optimization of horizontal axis wind turbine blades

  • Ying Zhang;Liang Li;Long Wang;Weidong Zhu;Yinghui Li;Jianqiang Wu
    • Wind and Structures
    • /
    • 제38권5호
    • /
    • pp.341-354
    • /
    • 2024
  • This paper presents a theoretical method to deal with the aerodynamic performance and pitch optimization of the horizontal axis wind turbine blades at low wind speeds. By considering a blade element, the functional relationship among the angle of attack, pitch angle, rotational speed of the blade, and wind speed is derived in consideration of a quasi-steady aerodynamic model, and aerodynamic loads on the blade element are then obtained. The torque and torque coefficient of the blade are derived by using integration. A polynomial approximation is applied to functions of the lift and drag coefficients for the symmetric and asymmetric airfoils respectively, where specific expressions of aerodynamic loads as functions of the angle of attack (which is a function of pitch angle) are obtained. The pitch optimization problem is investigated by considering the maximum value problem of the instantaneous torque of a blade as a function of pitch angle. Dynamic pitch laws for HAWT blades with either symmetric or asymmetric airfoils are derived. Influences of parameters including inflow ratio, rotational speed, azimuth, and wind speed on torque coefficient and optimal pith angle are discussed.

Wind-induced responses and equivalent static wind loads of tower-blade coupled large wind turbine system

  • Ke, S.T.;Wang, T.G.;Ge, Y.J.;Tamura, Y.
    • Structural Engineering and Mechanics
    • /
    • 제52권3호
    • /
    • pp.485-505
    • /
    • 2014
  • This study aimed to develop an approach to accurately predict the wind models and wind effects of large wind turbines. The wind-induced vibration characteristics of a 5 MW tower-blade coupled wind turbine system have been investigated in this paper. First, the blade-tower integration model was established, which included blades, nacelle, tower and the base of the wind turbine system. The harmonic superposition method and modified blade element momentum theory were then applied to simulate the fluctuating wind field for the rotor blades and tower. Finally, wind-induced responses and equivalent static wind loads (ESWL) of the system were studied based on the modified consistent coupling method, which took into account coupling effects of resonant modes, cross terms of resonant and background responses. Furthermore, useful suggestions were proposed to instruct the wind resistance design of large wind turbines. Based on obtained results, it is shown from the obtained results that wind-induced responses and ESWL were characterized with complicated modal responses, multi-mode coupling effects, and multiple equivalent objectives. Compared with the background component, the resonant component made more contribution to wind-induced responses and equivalent static wind loads at the middle-upper part of the tower and blades, and cross terms between background and resonant components affected the total fluctuation responses, while the background responses were similar with the resonant responses at the bottom of tower.

Evalulation of the Tower Fatigue Loads by Ice Formation on Rotor Blades (로터 블레이드 결빙에 의한 타워 피로하중 평가)

  • Kim, Jeong-Gi;Park, Sun-Ho;Bang, Jo-Hyug;Jung, Jong-Hun;Kim, Sang-Dug;Ryu, Ji-Yune
    • Journal of Wind Energy
    • /
    • 제5권1호
    • /
    • pp.43-49
    • /
    • 2014
  • Primarily, tower loads of a wind turbine arise from aerodynamic effect and a top head mass. But sometime asymmetric loads of rotor also affect on the tower loads. Especially ice formation on two blades out of three causes the asymmetric loads, because the ice formation on blades lead to large rotating mass imbalance. This rotating mass imbalance of rotor affects tower fatigue loads. So design load cases of ice formation on blade should be considered in the fatigue design loads of the tower according to GL guideline 2010. This paper describes the change of tower fatigue loads following increase of tower height in the condition of ice formation. Finally, the optimal operation strategy is examined in order to reduce tower fatigue design loads.

Thrust force and base bending moment acting on a horizontal axis wind turbine with a high tip speed ratio at high yaw angles

  • Bosnar, Danijel;Kozmar, Hrvoje;Pospisil, Stanislav;Machacek, Michael
    • Wind and Structures
    • /
    • 제32권5호
    • /
    • pp.471-485
    • /
    • 2021
  • Onshore wind turbines may experience substantially different wind loads depending on their working conditions, i.e. rotation velocity of rotor blades, incoming freestream wind velocity, pitch angle of rotor blades, and yaw angle of the wind-turbine tower. In the present study, aerodynamic loads acting on a horizontal axis wind turbine were accordingly quantified for the high tip speed ratio (TSR) at high yaw angles because these conditions have previously not been adequately addressed. This was analyzed experimentally on a small-scale wind-turbine model in a boundary layer wind tunnel. The wind-tunnel simulation of the neutrally stratified atmospheric boundary layer (ABL) developing above a flat terrain was generated using the Counihan approach. The ABL was simulated to achieve the conditions of a wind-turbine model operating in similar inflow conditions to those of a prototype wind turbine situated in the lower atmosphere, which is another important aspect of the present work. The ABL and wind-turbine simulation length scale factors were the same (S=300) in order to satisfy the Jensen similarity criterion. Aerodynamic loads experienced by the wind-turbine model subjected to the ABL simulation were studied based on the high frequency force balance (HFFB) measurements. Emphasis was put on the thrust force and the bending moment because these two load components have previously proven to be dominant compared to other load components. The results indicate several important findings. The loads were substantially higher for TSR=10 compared to TSR=5.6. In these conditions, a considerable load reduction was achieved by pitching the rotor blades. For the blade pitch angle at 90°, the loads were ten times lower than the loads of the rotating wind-turbine model. For the blade pitch angle at 12°, the loads were at 50% of the rotating wind-turbine model. The loads were reduced by up to 40% through the yawing of the wind-turbine model, which was observed both for the rotating and the parked wind-turbine model.