• Title/Summary/Keyword: Wind and current force

Search Result 114, Processing Time 0.035 seconds

ON TRANSPORTS DRIVEN BY TIME-VARYING WINDS IN HORIZONTALLY UNBOUNDED SHALLOW SEAS (시간변화적 바람에 따른 넓은 천해에서의 해수유랑)

  • Kang, Yong Q.
    • 한국해양학회지
    • /
    • v.17 no.2
    • /
    • pp.41-50
    • /
    • 1982
  • We present theoretical models for the unstedy transports driven by the time-varying wind stress in horizontally unbounded shallow seas of an uniform depth. We derive linearized transport equations that inchude the acceleration, the Coriolis firce, the wind stress and the bottom friction. The steady transport in a shallow sea is different from the classical Ekman transport because of a presence of non-negligible bottom fricttttion. The transient reansport and an inertial oscillation of which frequency of rotation is the same as the frequency of the wind stress forcing. The transprt associated with a wind stress of which direction changes linearlywith time is decribed by a superpoeition so a free inertial oscillation with a pweiod of one inertial day, The theoretical models of the transports are useful in understanding the time-varying currents and the transports of nutrients in shallow seas.

  • PDF

A Study on the Drift Phenomenon of a Ship on the Waterway near the Breakwater of Busan and Gamcheon Port (부산항과 감천항 방파제 인접 항로에서 선체에 작용하는 횡압류 현상에 관한 연구)

  • Lee Yun-Sok;Kim Chol-Seong;Kong Gil-Young;Im Nam-Kyun;Lee Chung-Ro
    • Journal of Navigation and Port Research
    • /
    • v.29 no.1 s.97
    • /
    • pp.1-7
    • /
    • 2005
  • In order to secure the traffic safety especially in the entrance waterway of harbour, it is important that the breakwater and the port facilities should be designed properly considering ship-handling difficulty and traffic flow. In this study, the lateral force acting on ship hull under the external force(wind, current, wave) is investigated quantitatively for the container ship approaching to the Busan and Gamcheon breakwater. The relation of ship-handling difficulty to the breakwater and the arrangement of ship's routine are examined based on the lateral force under the external force. Some of reviews to secure traffic safety on the design of breakwater are discussed.

Estimation of drift force by real ship using multiple regression analysis (다중회귀분석에 의한 실선의 표류력 추정)

  • AHN, Jang-Young;KIM, Kwang-il;KIM, Min-Son;LEE, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.57 no.3
    • /
    • pp.236-245
    • /
    • 2021
  • In this study, a drifting test using a experimental vessel (2,966 tons) in the northern waters of Jeju was carried out for the first time in order to obtain the fundamental data for drift. During the test, it was shown that the average leeway speed and direction by GPS position were 0.362 m/s and 155.54° respectively and the leeway rate for wind speed was 8.80%. The analysis of linear regression modes about leeway speed and direction of the experimental vessel indicated that wind or current (i.e. explanatory variable) had a greater influence upon response variable (e.g. leeway speed or direction) with the speed of the wind and current rather than their directions. On the other hand, the result of multiple regression model analysis was able to predict that the direction was negative, and it was demonstrated that predicted values of leeway speed and direction using an experimental vessel is to be more influential by current than wind while the leeway speed through variance and covariance was positive. In terms of the leeway direction of the experimental vessel, the same result of the leeway speed appeared except for a possibility of the existence of multi-collinearity. Then, it can be interpreted that the explanatory variables were less descriptive in the predicted values of the leeway direction. As a result, the prediction of leeway speed and direction can be demonstrated as following equations. Ŷ1= 0.4031-0.0032X1+0.0631X2-0.0010X3+0.4110X4 Ŷ2= 0.4031-0.6662X1+27.1955X2-0.6787X3-420.4833X4 However, many drift tests using actual vessels and various drifting objects will provide reasonable estimations, so that they can help search and rescue fishing gears as well.

A Simple Theoretical Model for the Upwind Flow in the Southern Yellow Sea (황해남부의 역풍류에 대한 단순 이론 모델)

  • 박용향
    • 한국해양학회지
    • /
    • v.21 no.4
    • /
    • pp.203-210
    • /
    • 1986
  • A linear parallel transport model is formulated and applied to an idealized Yellow Sea, With this simple analytical model, the hither-to suspected upwind flow phenomena in the southern Yellow Sea can be reasonably explained. In deep waters where the local depth exceeds a critical depth (Hc=53m in the present model sea), pressure gradient force dominates over wind stress and contributes to an upwind flow. The estimated upwind flow velocity increases with wind speed and a maximum upwind flow occurs along the axis of the Yellow Sea embayment. For the typical south wind of 5-10 knots in summer, the upwind (southward) flow velocity along the axis of the Yellow Sea is estimated to be 1-5cm s$\^$-1/. While, for the typical north wind of 10-15 knots in winter, the upwind (northward) flow velocity is 5-12cm s$\^$-1/. These velocity ranges can be served as rough estimates for the intrusion velocity of the Yellow Sea Bottom Cold Water in summer and the Yellow Sea Warm Current in winter, respectively.

  • PDF

Standards for the Use of Tugboats owing to the Increase in the Size of Ships - Focusing on the Busan New Port - (선박 대형화에 따른 예선 사용 기준에 관한 연구 - 부산 신항을 중심으로 -)

  • Chang-Hyun Jung;Chol-Seong Kim;Yun-Sok Lee;Young-Soo Park
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.30 no.2
    • /
    • pp.157-164
    • /
    • 2024
  • In 2020, 24,000 TEU ultra-large container ships began arriving at the Busan New Port. In this study, the wind pressure and hydraulic force acting on the hull were calculated to obtain the horsepower required for the tugboats for safe berthing and unberthing of a 24,000 TEU ultra-large container ship at the Busan New Port. When the wind speed is 10 m/s (20 kts), 13,000 TEU container ships meet the tug horsepower standard of the current Busan port tugboat operation rules, but 16,000 TEU and 24,000 TEU container ships do not satisfy the regulations. Therefore, it was proposed to raise the standards for tugboat use by dividing the size of ships of "G/T 150,000 tons or more," which is the largest vessel under the current tugboat use standards, into two stages. Because 140,000 tons requires 12,100 horsepower, 170,000 tons requires 14,500 horsepower, and 230,000 tons requires 18,000 horsepower, the study proposed 16,000 horsepower for 150,000 to less than 200,000 tons and 18,000 horsepower for 200,000 tons or more for the use of tugboats.

A Study on The Hull Form Porperty and Comparison of Korea.China Ancient Ship

  • Lee, Chang-Eok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 1997.10a
    • /
    • pp.185-202
    • /
    • 1997
  • Hull forms of ancient ships in Korea and China have been changed according to their voyages and routes. Therefore it is necessary for shipbuilding engineers to reestablish the ancient shipbuilding history, and to presume, restore and revive the lost cultural inheritances. We, however, do not have many historical documents or credible materials that can our ancestors' great shipbuilding techniques : at the same time we do not have paid much attention to the research on such documents and materials. This paper aims not only to study and compare shifting process of ancient ship's hull forms in Korea and China by making use of verifiable materials obtained in the process of excavating and restoring Shinan ancient ship. The results of comparing structural characteristics and hull forms of ancient ships in Korea and China and as follwing : (1) Korean ancient ships have transverse beam instead of frame . Judged from the bottomform, Korean ancient ships are grooved clinker type ships of flat bottom type, in which bottom planking is fixed by wooden bar. (2) Chinese ancient ships have transverse bulkhead structure instead of frame, Judged from the bottom form , Chinese ancient ships are rabetted clinker type ships of V-bottom type with a bar keel. The form , the position, and the size of a sail are closely related with the wind force. It is not only quite difficult to presume forms and sizes of ancient ships' sails precisely, but also impossible to come to an accurate conclusion wihtout much experience. Current 10-year-statistics of the wind force are used to obtain presumed routes of ancient ships in Korea and China. Conclusions obtained from the hull form , sail form and size , and mast height of Shinan ancient ship will provide credible data for sea trade routes and transformation capability, and wil be used for effective materials on the study of the shifting process of ancient ships in Korea and China.

  • PDF

Characteristic of holding power due to nature of seabed at anchor (묘박중 해저 저질에 따른 파주력 특성)

  • KIM, Byung-Yeob;KIM, Kwang-il;KIM, Min-son;NOBUO, Kimura;LEE, Chang-Heon
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.58 no.3
    • /
    • pp.230-240
    • /
    • 2022
  • In general, a high tension on the anchor and chain is placed when a ship at anchor is subjected to heavy weather. Mariners have to pay attention to whether dragging anchor occurs to keep the safety of the ship at anchorage since it is difficult to maintain the stable motion of ship and it causes collisions with other ships nearby. In this paper, the ship motion against the external forces was shown to obtain the fundamental data about characteristic of holding power due to nature of seabed at anchor, so practical trials were carried out in rocky area and muddy area using a trial ship around coastal area of South Korea. In muddy seabed, holding power showed reasonable tension values depending on the distance from anchor position of continuing swing motions of a ship corresponding to wind force. Meanwhile in rocky seabed, tension values on the chain appeared very high occasionally regardless of the distance from the anchor position and seemed to exceed its holding power to be the breaking strain of the chain although weather was not in a severe condition. Therefore, some of the cables laid on the seabed were presumed to be caught in a crack on the rock. It is assumed that even a small amount of external force may cause the chain to break in a moment in rocky seabed. Additionally, wind and current forces had a somewhat contradictory effect on holding power of the ship between them.

Numerical studies on flow-induced motions of a semi-submersible with three circular columns

  • Tian, Chenling;Liu, Mingyue;Xiao, Longfei;Lu, Haining;Wang, Jin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.13 no.1
    • /
    • pp.599-616
    • /
    • 2021
  • The semi-submersible with three circular columns is an original concept of efficient multifunctional platform, which can be used for marginal oil, gas field, and Floater of Wind Turbines (FOWT). However, under certain flow conditions, especially in uniform current with specific velocities, the eddies will alternatively form and drop behind columns, resulting in the fluctuating lift force and drag force. Consequently, the semi-submersible will subject to the Flow-Induced Motions (FIM). Based on the Detached Eddy Simulation (DES) method, the numerical studies were carried out to understand the FIM characteristics of the three-column semi-submersible at two different parameters, i.e., current incidences (0°, 30°, and 60°-incidences) and reduced velocities (4 ≤ Ur ≤ 14). The results indicate that the lock-in range of 6 ≤ Ur ≤ 10 for the transverse motions is presented, and the largest transverse non-dimensional nominal amplitude is observed at 60°-incidence, with a value of Ay/D = 0:481. The largest yaw amplitude Ayaw is around 3.0° at 0°-incidence in the range of 8 ≤ Ur ≤ 12. The motion magnitude is basically the same as that of a four-column semi-submersible. However, smaller responses are presented compared to those of the three-column systems revealing the mitigation effect of the pontoon on FIM.

A Study on the Spacer Installation Method for 2-Conductor Bundle Transmission Lines (2도체 송전선로의 스페이서 취부방식 연구)

  • Min, Byeong-Wook;Kim, Woo-Kyum;Choi, Han-Yeol;Park, Kee-Yong;Kim, Won-Jin;Park, Jae-Ung
    • Proceedings of the KIEE Conference
    • /
    • 2008.07a
    • /
    • pp.333-334
    • /
    • 2008
  • Overhead transmission lines are classified by the number of sub conductors per phase. Korean transmission lines use two, four, or six-conductor bundle. Bundle of conductors must have spacers or spacer dampers which keep the proper distance between sub conductors. They can prevent conductors from being vibrated or twisted due to the wind. As for the two-conductor bundle, alternating current flow generates absorption force between sub conductors which may cause a collision of sub conductors. To prevent sub conductors from being vibrated, twisted, and collided, spacer or spacer damper installation method is designed considering vibration characteristics of sub conductors. We have spacer installation method for four or six-conductor bundle lines. However, we don't have it for two-conductor bundle ones. So we have installed spacers at regular intervals in two-conductor bundle lines, and it caused rigid body oscillation of conductors due to the wind which made a flashover between conductors. This paper introduces a vibration characteristic analysis of two-conductor bundle and proposes a spacer installation method for two-conductor bundle lines.

  • PDF

Development of Apparatus and Methods for Understanding the Dynamics of the Western Boundary Current (서안경계류 역학을 이해하기 위한 실험 장치 및 방법 개발)

  • Jang, Swung-Hwan;Shin, Jung-Sun;Moon, Byung-Kwon
    • Journal of the Korean earth science society
    • /
    • v.31 no.1
    • /
    • pp.88-94
    • /
    • 2010
  • A simple laboratory device and methodology are developed for deep understanding of the western boundary current (WBC). The apparatus consists of a rotating (count-clockwise) rectangular tank with a sloping bottom in order to simulate the beta effect, the variation of the Coriolis parameter with latitude. We also used a clockwise rotating disk at the surface water to mimic the wind stress forcing in mid-latitude oceans. Four experiments were carried out using some combination of a bottom type and a rotation of the tank. Experiment with the beta effect clearly demonstrated the WBClike flow as well as the Sverdrup interior. However, the water in a tank gave rise to an inertial motion under the influence of a constant Coriolis force alone. We also discussed a stiffening of the rotating fluid on the basis of the Taylor-Proudman effect. We believe that the apparatus and methods developed in this study help to understand the WBC due to the beta effect.