• Title/Summary/Keyword: Wind Turbulence

Search Result 613, Processing Time 0.035 seconds

Medium.Large Horizontal Axis Wind Turbine Noise Analysis Considering Blade Passing Frequency Noise and Retarded Time (블레이드 통과 주파수 소음과 지연시간을 고려한 중.대형 수평축 풍력발전기의 공력소음해석)

  • Kim, Hyun-Jung;Kim, Ho-Geon;Lee, Soo-Gab
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.11a
    • /
    • pp.1490-1493
    • /
    • 2007
  • Aerodynamic noise generated from wind turbines is predicted by it's classified source mechanisms using computational method. BPF noise according to the blade passing motion, is modelled on monopole and dipole sources. They are predicted by Farassat 1A equation. Airfoil self noise and turbulence ingestion noise are modelled upon quadrupole sources and are predicted by semi-empirical formulas composed on the groundwork of Brooks et al. and Lowson. Retarded time is considered, not only in low frequency noise prediction but also in turbulence ingestion noise and airfoil self noise prediction. Wind turbine noise emission of a 3MW wind turbine and a 600 kW wind turbine, standing for large and middle sized wind turbines, is analyzed.

  • PDF

Non-Gaussian features of dynamic wind loads on a long-span roof in boundary layer turbulences with different integral-scales

  • Yang, Xiongwei;Zhou, Qiang;Lei, Yongfu;Yang, Yang;Li, Mingshui
    • Wind and Structures
    • /
    • v.34 no.5
    • /
    • pp.421-435
    • /
    • 2022
  • To investigate the non-Gaussian properties of fluctuating wind pressures and the error margin of extreme wind loads on a long-span curved roof with matching and mismatching ratios of turbulence integral scales to depth (Lux/D), a series of synchronized pressure tests on the rigid model of the complex curved roof were conducted. The regions of Gaussian distribution and non-Gaussian distribution were identified by two criteria, which were based on the cumulative probabilities of higher-order statistical moments (skewness and kurtosis coefficients, Sk and Ku) and spatial correlation of fluctuating wind pressures, respectively. Then the characteristics of fluctuating wind-loads in the non-Gaussian region were analyzed in detail in order to understand the effects of turbulence integral-scale. Results showed that the fluctuating pressures with obvious negative-skewness appear in the area near the leading edge, which is categorized as the non-Gaussian region by both two identification criteria. Comparing with those in the wind field with matching Lux/D, the range of non-Gaussian region almost unchanged with a smaller Lux/D, while the non-Gaussian features become more evident, leading to higher values of Sk, Ku and peak factor. On contrary, the values of fluctuating pressures become lower in the wind field with a smaller Lux/D, eventually resulting in underestimation of extreme wind loads. Hence, the matching relationship of turbulence integral scale to depth should be carefully considered as estimating the extreme wind loads of long-span roof by wind tunnel tests.

A Study on the Comparative Analysis Damage Cases of Wind Hazard and Poongsoojiri (풍수지리와 바람재난의 피해사례 비교분석에 관한 연구)

  • Lee, Dong Ik;Heo, Seong Je
    • Journal of Korean Society of Disaster and Security
    • /
    • v.6 no.2
    • /
    • pp.41-48
    • /
    • 2013
  • Based on the wind engineering, for the first time, a effects of wind in the Poongsoojiri is developed. The fluctuating wind velocity is assumed as time-dependent random process described by the time-independent random process with deterministic function during a short duration of time. The wind properties are represented by separation, turbulence, eddies, wind profiles, turbulence intensity and surface roughness. In this papers, there were compared the effects of wind engineering with the concepts of Poongsoojiri.

A 6 m cube in an atmospheric boundary layer flow -Part 2. Computational solutions

  • Richards, P.J.;Quinn, A.D.;Parker, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.177-192
    • /
    • 2002
  • Computation solutions for the flow around a cube, which were generated as part of the Computational Wind Engineering 2000 Conference Competition, are compared with full-scale measurements. The three solutions shown all use the RANS approach to predict mean flow fields. The major differences appear to be related to the use of the standard $k-{\varepsilon}$, the MMK $k-{\varepsilon}$ and the RNG $k-{\varepsilon}$ turbulence models. The inlet conditions chosen by the three modellers illustrate one of the dilemmas faced in computational wind engineering. While all modeller matched the inlet velocity profile to the full-scale profile, only one of the modellers chose to match the full-scale turbulence data. This approach led to a boundary layer that was not in equilibrium. The approach taken by the other modeller was to specify lower inlet turbulent kinetic energy level, which are more consistent with the turbulence models chosen and lead to a homogeneous boundary layer. For the $0^{\circ}$ case, wind normal to one face of the cube, it is shown that the RNG solution is closest to the full-scale data. This result appears to be associated with the RNG solution showing the correct flow separation and reattachment on the roof. The other solutions show either excessive separation (MMK) or no separation at all (K-E). For the $45^{\circ}$ case the three solutions are fairly similar. None of them correctly predicting the high suctions along the windward edges of the roof. In general the velocity components are more accurately predicted than the pressures. However in all cases the turbulence levels are poorly matched, with all of the solutions failing to match the high turbulence levels measured around the edges of separated flows. Although all of the computational solutions have deficiencies, the variability of results is shown to be similar to that which has been obtained with a similar comparative wind tunnel study. This suggests that the computational solutions are only slightly less reliable than the wind tunnel.

Advancing drag crisis of a sphere via the manipulation of integral length scale

  • Moradian, Niloofar;Ting, David S.K.;Cheng, Shaohong
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.35-53
    • /
    • 2011
  • Spherical object in wind is a common scenario in daily life and engineering practice. The main challenge in understanding the aerodynamics in turbulent wind lies in the multi-aspect of turbulence. This paper presents a wind tunnel study, which focuses on the role of turbulence integral length scale ${\Lambda}$ on the drag of a sphere. Particular turbulent flow conditions were achieved via the proper combination of wind speed, orifice perforated plate, sphere diameter (D) and distance downstream from the plate. The drag was measured in turbulent flow with $2.2{\times}10^4{\leq}Re{\leq}8{\times}10^4$, $0.043{\leq}{\Lambda}/D{\leq}3.24$, and turbulence intensity Tu up to 6.3%. Our results confirmed the general trends of decreasing drag coefficient and critical Reynolds number with increasing turbulence intensity. More interestingly, the unique role of the relative integral length scale has been revealed. Over the range of conditions studied, an integral length of approximately 65% the sphere diameter is most effective in reducing the drag.

Numerical Analysis of Wind Turbine Scale Effect by Using Computational Fluid Dynamics (전산유체역학을 이용한 풍력터빈 축소효과 수치해석)

  • Park Young-Min;Chang Byeong-Hee
    • New & Renewable Energy
    • /
    • v.2 no.2 s.6
    • /
    • pp.28-36
    • /
    • 2006
  • Numerical analysis of wind turbine scale effect was performed by using commercial CFD code, Fluent. For the numerical analysis of wind turbine, the three dimensional Navier-Stokes solver with various turbulence models was tested. As a turbulence mode, the realizable k-e turbulence model was selected for the simulation of wind turbines. To validate the present method, performance of NREL (National Renewable Energy Laboratory) Phase VI wind turbine model was analyzed and compared with its wind tunnel test and blind test data. Using the present method, numerical simulations for various size of wind tunnel models were carried out and characteristics were analyzed in detail. For wind tunnel test model, the size of nacelle may not be scaled down precisely because of available motor. The effect of nacelle size was also computed and analyzed though CFD simulation. The present results showed the good correlations in pre-stall region but much to be improved in post-stall region. In 2006 and 2007, the performance and the scale effect of standard wind turbine model will be tested in KARI(Korea Aerospace Research Institute) LSWT(Low Speed Wind Tunnel) and the present results will be validated with the wind tunnel data.

  • PDF

A Study on the Effects of Turbulence to Ultimate Loads Acting on the Blade of Wind Turbine (풍력발전시스템의 블레이드에 작용하는 극한하중에 대한 난류의 영향 연구)

  • Hyun, Seung-Gun;Kim, Keon-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.1
    • /
    • pp.7-14
    • /
    • 2013
  • This study has analysed the ultimate loads acting on a wind turbine which is operating in a high turbulent flow condition because the ultimate loads are critical factors on the safe design of wind turbine. Since wind flow on the most parts of Korean mountainous are strongly influenced by complex configurations of the topography, turbulence intensity on somewhere is so stronger than an international design standard. For this reason, the characteristics of turbulent wind data collected from actual sites were analyzed and used for the ultimate load evaluation of the wind turbine. With the 270 design load cases on the international standards, the differences of ultimate loads on the wind turbine operating in the standard or high turbulent wind condition are calculated and compared for the an enhanced knowledge of the safe design basis. As are result, it is revealed the specific ultimate loads are strongly affected by the high turbulent wind conditions, thus the characteristics of turbulent flow must be considered during the design of wind turbine.

Wind-tunnel simulations of the suburban ABL and comparison with international standards

  • Kozmar, Hrvoje
    • Wind and Structures
    • /
    • v.14 no.1
    • /
    • pp.15-34
    • /
    • 2011
  • Three wind-tunnel simulations of the atmospheric boundary layer (ABL) flow in suburban country exposure were generated for length scale factors 1:400, 1:250 and 1:220 to investigate scale effects in wind-tunnel simulations of the suburban ABL, to address recommended wind characteristics for suburban exposures reported in international standards, and to test redesigned experimental hardware. Investigated parameters are mean velocity, turbulence intensity, turbulent Reynolds shear stress, integral length scale of turbulence and power spectral density of velocity fluctuations. Experimental results indicate it is possible to reproduce suburban natural winds in the wind tunnel at different length scales without significant influence of the simulation length scale on airflow characteristics. However, in the wind tunnel it was not possible to reproduce two characteristic phenomena observed in full-scale: dependence of integral length scales on reference wind velocity and a linear increase in integral length scales with height. Furthermore, in international standards there is a considerable scatter of recommended values for suburban wind characteristics. In particular, recommended integral length scales in ESDU 85020 (1985) are significantly larger than in other international standards. Truncated vortex generators applied in this study proved to be successful in part-depth suburban ABL wind-tunnel simulation that yield a novel methodology in studies on wind effects on structures and air pollution dispersion.

Effect of Wake on the Energy Production of the Downstream Wind Turbine (후류가 하류 풍력발전기의 발전량에 미치는 영향)

  • Hong, Young-Jin;Yoo, Hoseon
    • Plant Journal
    • /
    • v.12 no.3
    • /
    • pp.32-38
    • /
    • 2016
  • In this study, the effect of wake on the energy production of a downstream wind turbine was analyzed on the base of operation practices of wind farm in the coastal complex terrain which has 2 row array of wind turbines. And changes in the variation of wind speed and turbulence intensity was analyzed. In case wind turbines are spaced 4-rotor diameter-apart in the prevailing wind direction, reduction in energy production was confirmed due to the decrease of wind speed and the increase of turbulence intensity by wake. Especially a radical change of wind direction caused wind turbine a sudden stop and energy production significantly reduced. It is considered improvement of yaw brake can prevent the sudden stop and increase energy production.

  • PDF

A Prediction of Turbulent Characteristics in a Complex Terrain by Linear Theory (선형이론에 의한 복잡지형 내 난류 특성의 예측)

  • Yoon, J.E.;Kyong, N.H.;Kim, S.W.
    • Journal of the Korean Solar Energy Society
    • /
    • v.25 no.1
    • /
    • pp.79-86
    • /
    • 2005
  • The external conditions for estimating dynamic wind loads of wind turbines, such as the turbulence, the extreme wind, the mean velocity gradients and the flow angles, are simulated over GangWon Wind Energy Test Field placed in one of the most complex terrain in Korea. Reference meteorological data has been gathered at a height of 30m from 2003 to 2004 with a ultrasonic anemometer. The absolute value of the spectral energy are simulated and the verification of this prediction has been carried out with comparing to the experimental data. The most desirable place for constructing new wind turbine are resulted as Point 2 and Point 3 due to the lower value of Turbulence Intensity and the higher value of wind resource relatively.